4.8. Clases de simetría y relación entre ellas. Holoedría y Meroedría Dentro de cada uno de los siete sistemas cristalinos existen poliedros con un mínimo y un máximo de elementos de simetría, en función de ellos se hace la siguiente clasificación: HOLOEDRÍA : La constituyen aquellas clases que poseen el número máximo de elementos de simetría compatibles con el tipo de red espacial que les corresponde. Esta clase tiene el número máximo de puntos de posición general. Siendo N = número de caras de la holoedría, en cada sistema tendríamos que : Hemiedría = N/2 tienen la mitad de las caras de dicha holoedría Tetartoedría = N/4 tendrían un cuarto de las caras de la holoedría y en un caso se llega a ogdoedros 1/8 de caras de la holoedría. MEROEDRÍA: Cualquier clase que presente un número menor de simetría que la holoedría; (en general los poliedros no holoédricos se denominan meroedros). Las clases que resultan de la combinación de un eje principal de rotación propia o impropia con un eje binario o monario normal a él se denominan:
Hemiedrías: Estas pueden ser .. Hemiedría paramórfica: Eje principal + centro de simetría 1
Ej : 2 / m; 3; 4 / m; 6 / m; 3 .. Hemiedría hemimórfica: Eje principal + Eje binario de inversión perpendicular al primero = m Poseen eje principal polar. Cada forma se divide aquí en dos conjugadas, es decir, en dos formas especulares con relación al plano de simetría. Se denominan: positiva y negativa (o directa e inversa)
Ej : 4 3m; 4mm; 6mm; 3m; 2mm (mm2) .. Hemiedría enantiomórfica: Eje principal + eje binario ordinario perpendicular al primero Estos poliedros son entre si como los cuerpos derechos e izquierdos (las manos por ejemplo). Se diferencian pues en forma derecha e izquierda.
Ej.: 432; 422; 622; 32; 222 A las clases hemiédricas (con eje de inversión y que no se presentan en otro lugar, se las denomina hemiedría de segunda especie o hemiedrías con eje de inversión. Ej: 4 2 m; 6 m 2 (62m) y m Añadiendo a cualquier hemiedría una operación que no haya sido añadida se obtiene la holoedría Cuando un sistema queda definido por un mínimo de elementos de simetría se le denomina: TETARTOEDRÍA Son clases de simetría que poseen un solo eje como elemento de simetría. El eje característico de la clase se denomina eje principal. Solo operan ejes Ej: 23 (se “lee” dos tres), 4, 6, 3 y 2 (también se le incluye en la hemimorfía)(monoclínico). A las clases 4 y 6 se denominan tetartoedría de 2ª especie o tetartoedros con ejes de inversión. En las tetartoedrías en lugar de presentarse las formas holoédricas, lo hacen cuatro formas conjugadas.
35