11) INTRODUCCIÓN A LOS GRUPOS ESPACIALES 12 230 grupos espaciales13 de simetría (Fedorov y Schoenflies y Barlow elevaron a 230 las maneras de distribuir u operar con los nudos) (cada cristal corresponde a cada uno de estos grupos).
Cuando se combinan los 14 tipos posibles de redes espaciales (redes de Bravais) con la simetría propia de las 32 clases de cristales (simetría del grupo puntual exento de traslación) , así como con las dos operaciones de simetría que implican traslación (tornillos: ejes helicoidales y deslizamientos), llegamos al concepto de grupos espaciales. Estos grupos representan las diversas formas en que los motivos (tales como los átomos en los cristales) pueden distribuirse en el espacio en una estructura homogénea (homogénea significa que cada motivo es equivalente a cualquier otro motivo del modelo). Los grupos espaciales definen la simetría y las traslaciones en el espacio (o a nivel atómico). Si ignoramos los componentes de traslación en los 230 grupos espaciales terminaremos en los 32 grupos puntuales. Los planos de deslizamiento y ejes helicoidales no pueden detectarse morfológicamente, ya que las traslaciones son del orden de 1 a 10 y son inobservables a simple vista.
11.1. Características de los grupos espaciales: 1. Están basados en una de las 14 redes de Bravais que es compatible con un grupo puntual específico ( P, (A, B, C), I, F). 2. Son isogonales con uno de los 32 grupos puntuales ( 2/m 2/m 2/m; 6mm, 2/m .......). Esta propiedad implica que los ejes de rotación y helicoidales que tienen la misma repetición rotacional tienen también el mismo ángulo de rotación (por ejemplo 60º en una rotación senaria o un eje senario tipo helicoidal). Esto significa que los ejes tipo helicoidal de rotación 61, 62, 63, 64, y 65 son isogonales con el eje de rotación 6. En otras palabras, el grupo puntual es el residuo, libre de traslación de una familia de grupos espaciales isogonales posibles.
11.2. Nomenclatura de los grupos espaciales (4 redes planas y 17 grupos espaciales bidimensionales). Un grupo espacial se reconoce en función de su red de Bravais y de su simetría. 1. Las características de la red se expresan, primero, utilizando las letras P (A, B, C), I, F que corresponden al tipo de red de Bravais. 2. A continuación, se describen en el símbolo los elementos de simetría en el siguiente orden: primero, el eje de simetría característico (si lo hay), y luego los demás elementos de simetría no independientes.
12
El grupo espacial se podría definir como la simetría microscópica de un cristal que se obtiene a partir de las 32 clases de simetría añadiendo nuevas operaciones (ejes helicoidales, planos de deslizamiento). En los grupos espaciales el motivo es independiente de lo que se vea en el exterior, depende del espacio y no de la simetría que nos da el poliedro cristalino. 13 Está relacionado con la teoría matemática de grupos que permite una deducción sistemática de todas las posibles y no idénticas combinaciones de simetría
199