Page 1



Ju Hyun  Son-­‐354978   1    




Arches,  Domes  &  Shells   Arches   -­‐ Curved  structures  for  spanning   an  opening,  designed  to  support  a   vertical    load  primarily  by  axial   compression   -­‐ Transform  the  vertical  forces  of  a   supported  load  into  inclined   components  and  transmit  them   to  abutments  on  either  side  of  the   archway        

Figure 1  Arches  roof  (  


Figure 3  dome  type  of  construction   (   Figure  2  Arches  force  diagram  

Domes -­‐ A  dome  is  a  spherical  surface   structure  having  a  circular  plan   and  constructed  of  stacked   blocks,  a  continuous  rigid   material  like  reinforced  concrete,   or  of  short,  linear  elements,  as  in   the  case  of  a  geodesic  dome.     -­‐ Similar  to  a  rotated  arch  except   that  circumferential  forces  are   developed  that  are  compressive   near  the  crown  and  tensile  in  the   lower  portion.      

Figure 4  dome  drawing  

        Ju  Hyun  Son-­‐354978   2  



Shells   -­‐ Thin,  curved  plate  structures   typically  constructed  of   reinforced  concrete   -­‐ Shaped  to  transmit  applied  forces   by  membrane  stresses   -­‐ Compressive,  tensile,  shear   stresses  acting  in  the  plane  of   their  surfaces   -­‐ Can  sustain  relatively  large  forces   if  uniformly  applied  because  its   thinness,  however,  a  shell  has   little  bending  resistance  and  is   unsuitable  for  concentrated  loads  

Figure 5  shell  type  of  structure   (  

Figure 6  shell  drawing  

Detailing for  heat  and  moisture   For  water  to  penetrate  into  a  building,   there  are  three  conditions  to  meet:   -­‐ An  opening   -­‐ Water  present  at  the  opening   -­‐ A  force  to  move  water  through   the  opening   To  prevent  the  water  penetrating  into  a   building:   -­‐ Remove  openings   -­‐ Keep  water  away  from  openings   -­‐ Neutralize  the  forces  that  move   water  through  openings      

Figure  8  detailing  for  moisture  drawings  

Ju Hyun  Son-­‐354978   3    

Figure 7  detailing  for  moisture   (



Openings   -­‐ Planned:  elements  such  as   windows,  doors,  skylights   -­‐ Unplanned:  poor  construction   workmanship   -­‐ Deterioration  of  materials     Common  techniques  used  to  remove   openings  to  prevent  water  penetration   include  seal  the  openings  with:   -­‐ Sealants  (e.g.  silicone)   -­‐ Gaskets  (e.g.  preformed  shapes   made  from  artificial  rubbers  etc.)   -­‐ Both  examples  are  heavily  on   correct  installation  and  will   deteriorate  over  time  due  to   weathering.  

Figure 9  unplanned  opening   (  

Figure 10  unplanned  opening  drawing  

Keeping water  from  openings   It  means  that  water  is  directed  away   from  any  potential  openings  in  the   building:   -­‐ Grading  (sloping)  roofs  so  that   the  water  is  collected  in  gutters   which  then  discharge  the  water   to  downpipes  and  storm  water   systems   -­‐ Overlapping  cladding  and  roofing   elements  and  roof  tiles   -­‐ Sloping  window  and  door  sills   and  roof/wall  flashings   -­‐ Sloping  the  ground  surface  away   from  the  walls  at  the  base  of   buildings  

Figure 11  keep  water  from  openings  (ching)  

Figure 12  gutter  to  keep  water  from  openings   (  

Ju  Hyun  Son-­‐354978   4  



Neutralising  the  forces   The  most  secure  strategies  for  keeping   water  out  of  buildings  are  those  based   on  neutralizing  the  forces  which  move   water.   The  forces  to  be  considered  as:   -­‐ Gravity   -­‐ Surface  tension  and  capillary   action   -­‐ Momentum   -­‐ Air  pressure  differential  

-­‐ -­‐ -­‐

Figure 14  water  out  from  gutter   (  

-­‐ -­‐


Figure 13  neutralising  the  forces  (ching)  



Typically use  slopes  and  overlaps   to  carry  water  away  from  the   building  using  the  force  of  gravity   Use  a  drip  or  a  break  between   surfaces  to  prevent  water   clinging  to  the  underside  of   surface  (such  as  a  window  sill  or   parapet  capping)   Gaps  and  breaks  prevent  water   reaching  and  entering  openings   because  the  surface  tension  of   the  water  is  broken  at  the  drip/   gap  location.     The  capillary  action  movement  of   the  water  stops  and  the  water  is   released  in  drop  form  

Momentum: windblown  rain,   moisture  and  snow  can  move   through  simple  gaps   To  inhibit  this  movement,  the   gaps  are  often  constructed  in   more  complex  fabyrinth  shapes   The  complex  shape  shows  the   momentum  of  the  moisture  and   helps  to  deflect  the  water  away   from  the  gap  entry  

Air  pressure  differential  strategies   -­‐ Water  can  be  moved  through  a   complex  labyrinth  with  gusts  of   wind  if  there  is  a  difference  in  the   air  pressure  between  the  outside   and  inside.     -­‐ Pumped  from  the  high  pressure   to  the  low  pressure     Rain  screen  assemblies:   -­‐ Air  barrier  is  introduced  on  the   internal  side  of  the  labyrinth,  a   ventilated  and  drained  pressure   equalization  chamber  is  created     -­‐ Then,  water  is  no  longer  pumped   to  the  inside  of  the  assembly       Ju  Hyun  Son-­‐354978   5  



Controlling  heat:   Heat  gain/  heat  loss   -­‐ Conducted  through  the  building   envelope   -­‐ The  building  envelope  and   building  elements  are  subjected   to  radiant  heat  sources   -­‐ Thermal  mass  is  used  to  regulate   the  flow  of  heat  through  the   building  envelope   -­‐ Effective  control  will  save  energy   Controlling  heat-­‐  conduction:   -­‐ Thermal  insulation  to  reduce   heat  conduction   -­‐ Thermal  breaks  made  from  low   conductive  materials  like  rubbers   and  plastics  to  reduce  the  heat   transfer  from  outside  to  inside   -­‐ Double  glazing  or  triple  glazing   so  that  the  air  spaces  between   glass  panes  reduces  the  flow  of   heat  through  the  glazed  elements  

Figure 15  thermal  insulation  method   (  

Figure 17  radiation  definition   (  

Figure 16  sustainable  heat  transfer  in  a  building  

Radiation It  can  be  controlled  by:   -­‐ Reflective  surfaces:  such  as  low-­‐e   glass,  reflective  materials  to   reduce  building  elements  from   becoming  warm/  hot   -­‐ Shading  systems  like  verandahs,   eaves,  solar  shelves,  blinds,   screens  and  vegetation  to   prevent  radiation  striking  the   building  envelope      

Figure 18  radiation  controlling  drawing  

Ju Hyun  Son-­‐354978   6    



Thermal  mass   Large  areas  of  exposed  thermal  mass   can  be  used  to  absorb  and  store  heat   over  a  period  of  time.   When  temperature  drops,  the  stored   heat  is  released.  This  system  works  well   when  there  are  large  differences  in   temperatures  between  day  and  night.     Materials  for  thermal  mass:   -­‐ Masonry     -­‐ Concrete   -­‐ Water  bodies   Controlling  air  leakage   Airtight  detailing  is  similar  to  watertight   detailing:   -­‐ An  opening   -­‐ Air  present  at  the  opening   -­‐ A  force  to  move  air  through  the   opening   Air  will  move  through  the  building  and   the  spaces  will  become  drafty  in  cold   weather,  uncomfortable  and  it  will  be   difficult  to  maintain  adequate  levels  of   heating  because  air  is  leaking  out  of  the   building  envelope.   Air  leakage  includes:   -­‐ Eliminating  any  one  of  the  causes  


Wrapping the  building  in   polyethylene  or  reflective  foil   sarking  to  provide  an  air  barrier   weather  stripping  around  doors   and  windows  and  other  openings  

Figure 20  forces  causing  air  leakage  

Figure 19  air  leakage  (ching)  

Figure  21  examples  of  air  leakage   (  

Ju Hyun  Son-­‐354978   7    

LOGBOOK   Rubber   -­‐ Hardness:  harder  rubbers  resist   abrasion,  softer  rubbers  provide   better  seals   -­‐ Fragility:  low.  Generally  will  not   shatter  or  break   -­‐ Ductility:  high  when  in  heated   state.  Varied  in  cold  state   -­‐ Flexibility/  plasticity:  high   flexibility,  plasticity  and  elasticity   -­‐ Porosity/  permeability:  all   rubbers  are  considered   waterproof     -­‐ Density:  approx.  1.5  times   density  of  water   -­‐ Conductivity:  very  poor   conductors  of  heat  and  electricity   -­‐ Durability/  life  span:  can  very   durable   -­‐ Reusability/  recyclability:  high   -­‐ Sustainability  &  carbon  footprint:   embodied  energy  varies  greatly   between  natural  rubber  and   synthetic  rubbers.  Renewable  if   correctly  managed   -­‐ Cost  generally  cost  effective   Commonly  used  in:   -­‐ Seals   -­‐ Gaskets  &  control  joints  

-­‐ Flooring -­‐ Insulation   -­‐ Hosing  &  pipoing   Main  types:   -­‐ EPDM:  mainly  used  in  gaskets   and  control  joints   -­‐ Neoprene:  mainly  used  in  control   joints   -­‐ Silicone:  seals   Weather  related  damage   -­‐ Can  lose  their  properties  when   exposed  to  weather  especially   sunlight   -­‐ To  protect  the  material,  avoid  or   minimize  sun  exposure  when  it  is   possible  

Figure 22  rubber  material  (e-­‐learning)  


Ju  Hyun  Son-­‐354978   8  




Moisture  &  thermal  expansion   Flashing  refers  to  thin  continuous  pieces   of  sheet  metal  or  other  impervious   material  installed  to  prevent  the  passage   of  water  into  a  structure  from  an  angle   or  joint.   -­‐ Exposed  or  concealed   -­‐ Usually  a  sheet  metal,  such  as   aluminum,  copper,  painted   galvanized  steel,  stainless  steel,   zinc  alloy,  terne  metal,  or  copper-­‐ clad  lead   -­‐ Provide  expansion  joints  on  long   runs  to  prevent  deformation  of   the  metal  sheets   -­‐ Aluminum  and  lead  react   chemically  with  cement  mortar   -­‐ Some  flashing  materials  can   deteriorate  with  exposure  to   sunlight  

Figure 23  thermal  expansion  (ching)  

Thermoplastics: mouldable  when  heated   and  become  solid  again  when  cooled.   Can  be  recycled.   -­‐ Polyethelyne   -­‐ Polymethyl  methacrylate   -­‐ Polyvinyl  chloride   -­‐ Polycarbonate  

Figure 24  thermal  expansion  crack  in   brick(  

Plastics It  is  made  from  elements  such  as:   -­‐ Carbon,  silicon,  hydrogen,   nitrogen,  oxygen  and  chloride   combined  by    chemical  reactions   into  monomers   -­‐ Combine  with  each  other  to  form   polymers   -­‐ Polymers  are  ong  chains  of   monomers  that  make  the   substances  we  call  plastics    

Figure  25  polyethelyne,  polycarbonate,  perspex   (e-­‐learning)  

Thermoplastic can  only  be  shaped  once   -­‐ Melamide  formaldehyde   (laminex)  widely  used  for   finishing  surfaces   -­‐ Polystyrene  (slyrene):  mostly   used  in  insulation  panels  

Figure 26  Extruded  polystyrene  (e-­‐learning)  

Ju Hyun  Son-­‐354978   9    



Elastomers  (synthetic  rubbers):  refer  to   separate  e-­‐module   -­‐ EPDM   -­‐ Neoprene   -­‐ Silicone   Properties  of  plastic   -­‐ Hardness:  med.  To  low.   Depending  on  type   -­‐ Fragility:  low  to  med.  Generally   will  not  shatter  or  break.  Sunlight   and  high  temperatures  can   degradate  some  plastics  quite   quickly.  Can  be  fragile  in   degraded  state   -­‐ Ductility:  high  when  in  heated   state.  Varied  in  cold  state   -­‐ Flexibility/  plasticity:  high   flexibility  and  plasticity   -­‐ Porosity/  permeability:  many   plastics  are  waterproof   -­‐ Density:  low  0.65  times  density  of   water  for  polypropylene  to  1.5   times  for  pvc   -­‐ Conductivity:  very  poor   conductors  of  heat  and  electricity   -­‐ Durability/  life  span:  can  very   durable.  Varies  depending  on   type,  finishing  and  fixing  




Reusability/ recyclability:  high   for  thermoplastics  and   elastomers/  very  limited  for   thermosetting  plastics   Sustainability  &  carbon  footprint:   embodied  energy  varies  greatly   between  recycled  and  not   recycled.  Plastics  are   petrochemical  derives  so  not  a   renewable  resource   Cost:  generally  cost  effective  

Plastics  degrade  when  exposed  to   weather  especially  sunlight  and  need  to   be  checked  and  maintained.  To  prevent   and  manage  the  plastic,  avoid  or   minimize  sun  exposure.  Some  plastics   have  very  high  expansion/  contraction   coefficients.  

Figure 27  plastic  waste/  failure  (e-­‐learning)  


Paints   Components:   -­‐ Binder:  the  film-­‐forming   component  of  the  paint   (polyurethanes,  polyesters,   resins,  epoxy,  oils)   -­‐ Diluent:  dissolves  the  apint  and   adjust  its  viscosity  (alcohol,   ketones,  petroleum  distillate,   esters)   -­‐ Pigment:  gives  the  paint  its   colour  and  opacity.  Can  be   natural  (clays,  talcs,  calcium   carbonate,  silicas)  or  synthetic  

Figure 28  painted  building  (e-­‐learning)  

      Ju  Hyun  Son-­‐354978   10  

LOGBOOK   Paints-­‐  types  &  uses   1. Oil  based   -­‐ Used  prior  to  plastic  paints   (water  based)   -­‐ Very  good  high  glass  finishes  can   be  achieved   -­‐ Not  water  soluble  (brushed  to  be   cleaned  with  turpentine)   2. Water  based   -­‐ Most  common  today  (except   where  particular  finishes  are   desired)   -­‐ Durable  and  flexible   -­‐ Tools  and  brushes  can  be  cleaned   with  water   Properties  of  plastics:  wide  range   depending  on  type:   -­‐ Colour  consistency:  should  resist   fading,  especially  when  outside  in   ultra-­‐violet  light,  red  dyes  tend  to   be  less  stable  in  sunlight   -­‐ Durability:  need  to  resist   chipping,  cracking  and  peeling.   Exterior  painted  surfaces  have  to   resist  the  effect  of  rain.  Air   pollution  and  the  ultra  violet  light   in  sunlight.  Newer  paint   technologies  such  as  powder  

-­‐ -­‐

coating and  PVF2  are  harder  and   more  durable   Gloss:  surface  finishes  can  range   from  matt  through  to  gloss:   Flexibility/  plasticity:  water   based  latex  paint  is  more  flexible   than  oil  based  paint.  Gloss-­‐ surface  finishes  can  range  from   matt  through  to  gloss.  

Figure 29  painting  process  on  the  wall   (  

No activity  this  week      

Ju Hyun  Son-­‐354978   11    


LOGBOOK   Glossary   1. Drip   -­‐  is  a  form  of  abstract  art  in  which   paint  is  dripped  or  poured  onto   the  canvas.   2. Vapour  barrier   -­‐  is  any  material  used  for  damp   proofing,  typically  a  plastic  or  foil   sheet,  that  resists  diffusion  of   moisture  through  wall,  ceiling   and  floor  assemblies  of  buildings   and  of  packaging.   3. Gutter   -­‐  a  narrow  through  or  duct  which   collects  rainwater  from  the  roof   of  a  building  and  diverts  it  away   from  the  structure,  typically  into   a  drain.   4. Parapet   -­‐  is  a  barrier  which  is  an   extension  of  the  wall  at  the  edge   of  a  roof,  terrace,  balcony,   walkway  or  other  structure.   5. Down  pipe   -­‐  is  also  known  as  downspout,   waterspout,  drain  spout,  roof   drain  pipe,  leader,  or  rone.  It  is  a   pipe  for  carrying  rainwater  from   a  rain  gutter.  

6. Flashing -­‐  is  also  known  as   weatherproofing.  It  refers  to  thin   pieces  of  impervious  material   installed  to  prevent  the  passage   of  water  into  a  structure  from  a   joint  or  as  part  of  a  weather   resistant  barrier  (WRB)  system.   7. Insulation   -­‐  refers  broadly  to  any  object  in  a   building  used  as  insulation  for   any  purpose.  While  the  majority   of  insulation  in  buildings  is  for   thermal  purposes,  the  term  also   applies  to  acoustic  insulation,  fire   insulation,  and  impact  insulation.   8. Sealant   -­‐  may  be  viscous  material  that   has  little  or  no  flow   characteristics  and  stay  where   they  are  applied  or  thin  and   runny  so  as  to  allow  it  to   penetrate  the  substrate  by  means   of  capillary  action.    

Ju Hyun  Son-­‐354978   12    




Ju Hyun  Son-­‐354978   13    




Geometry  and  moment  of  inertia   The  efficiency  of  a  beam  is  increased  by   configuring  the  cross  section  to  provide   the  required  moment  of  inertia  or   section  modulus  with  the  smallest   possible  area,  usually  by  making  the   section  deep  with  most  of  the  material  at   the  extremities  where  the  maximum   bending  stresses  occur.   -­‐ Momentum  of  inertia  is  the  sum   of  the  products  of  each  element   of  an  area  and  the  square  of  its   distance  from  a  coplanar  axis  of   rotation   -­‐ Geometry  property  that  indicates   how  the  cross-­‐sectional  area  of  a   structural  member  is  distributed   and  does  not  reflect  the  intrinsic   physical  properties  of  a  material   -­‐ Defined  as  the  moment  of  inertia   of  the  section  divided  by  the   distance  from  the  neutral  axis  to   the  most  remote  surface  

Doors &  windows  

Figure 30  examples  of  the  moment  of  inertia  of  the   beam  (  

Figure 32  door  frame  terminology  (ching)  

Figure 31  momentum  of  inertia  on  the  beam   diagram  

Figure  33  Door  leaf  (ching)  

Ju Hyun  Son-­‐354978   14    



Figure 34  Window  &  window  frame  terminology   (ching)  

Figure  35  window  head  details  

Figure 36  examples  of  different  types  of  windows   (  

Ju Hyun  Son-­‐354978   15    

LOGBOOK   Glass   Components   -­‐ Formers:  the  basic  ingredient   used  to  produce  glass.  Any   chemical  compound  that  can  be   melted  and  cooled  into  a  class  is  a   former   -­‐ Fluxes:  help  formers  to  melt  at   lower  and  more  practical   temperatures   -­‐ Stabilizers:  combine  with   formers  &  fluxes  to  keep  the   finished  glass  from  dissolving  or   crumbling  

Figure 37  components  of  glass  (e-­‐learning)  


Properties -­‐ Porosity/  permeability:  non-­‐ porous/  waterproof   -­‐ Density:  med.  To  high.   Approximately  2.7  times  more   dense  than  water   -­‐ Conductivity:  transmits  heat  and   light  but  not  electricity   -­‐ Hardness:  high.  Can  be  scratched   with  a  metallic  object   -­‐ Fragility:  high.  Differs  depending   on  the  type  of  glass  (tempered   glass  is  not  as  brittle  as  float   glass)   -­‐ Ductility:  very  low   -­‐ Flexibility/  plasticity:  very  high   flexibility  and  plasticity  when   molten/  low  to  very  low  when   cooled   -­‐ Durability/  life  span:  typically   very  durable-­‐chemical,  rust  and   rot  resistant   -­‐ Reusability/  recyclability:  very   high   -­‐ Sustainability  &  carbon  footprint:   typically  high  embodied  energy   and  carbon  footprint  but  ease  of   recycling/  reuse  markets  it  a   popular  sustainable  product  


Cost: generally  expensive  to   produce  and  transport    

Ju Hyun  Son-­‐354978   16    




Activity:  In  detail   For  this  activity,  Roof  &  ceiling  of  the   function  room  needs  to  be  drawn.   Figure  39  Exterior  of  roof  &  ceiling  

Figure 38  part  that  needs  to  be  drawn  

Note: Original  A1  1:1  detail  drawing   folded  to  A4  size  will  be  attached  at  the   end  of  the  logbook.     In  fact,  from  the  site  visit,  roof  &  ceiling   wasn’t  able  to  observe  or  take  photos.   The  following  picture  will  show  the   actual  building.  

Glossary 1. Window  sash   -­‐  is  the  framed  part  of  the   window  which  holds  the  sheets   of  glass  in  place.   2. Deflection   -­‐  is  the  degree  to  which  a   structural  element  is  displaced   under  a  load.     3. Moment  of  inertia   -­‐  is  the  mass  property  of  a  rigid   body  that  defines  the  torque   needed  for  a  desired  angular   acceleration  about  an  axis  of   rotation.   4. Door  furniture   -­‐  Consists  of  the  handles,  lock,   and  other  fixtures  on  a  door.   5. Stress   -­‐ Pressure  or  tension  exerted  on  a   material  object.    


6. Shear force   -­‐ Is  unaligned  forces  pushing  one   part  of  a  body  in  one  direction,   and  another  part  the  body  in  the   opposite  direction.        

Ju Hyun  Son-­‐354978   17    



Ju Hyun  Son-­‐354978   18    




CONSTRUCTION  DETAILING   Joints  and  Connections   The  manner  in  which  forces  are   transferred  from  one  structural  element   to  the  next  and  how  a  structural  system   performs  as  a  whole  depend  to  a  great   extent  on  the  types  of  joints  and   connections  used.  Structural  elements   are  joined  to  each  other  in  three  ways   such  as:  butt  joints,  interlocking  or   overlapping  joints  and  molded  or   shaped  joints.  

connections, reinforced  concrete  and   rigid  or  fixed  joints.  

Figure 42  bolted  connections  (  

Figure 41  3  different  joints  drawing  

Figure 40  Examples  of  the   joints( )  

The connectors  used  to  join  the   structural  elements  may  be  in  the  form   of  a  point,  a  line,  or  a  surface.  While   linear  and  surface  types  of  connectors   resist  rotation,  point  connectors  do  not   unless  a  series  of  them  is  distributed   across  a  large  surface  area.   There  are  several  types  of  connectors:   point  connector  (bolt),  linear  connector   (weld),  surface  connector  (glue),  bolted   connections,  precast  concrete   connections,  pinned  joints,  welded  steel  

Figure 43  Bolted  connections  and  pinned  joints   drawing  

Ju Hyun  Son-­‐354978   19    



Movement  joints   There  are  several  types  of  movement   joints:   -­‐ Expansion  joints:  continuous,   unobstructed  slots  constructed   between  two  parts  of  a  building   or  structure  permitting  thermal   or  moisture  expansion  to  occur   without  damage  to  either  part.   -­‐ Control  joints:  continuous   grooves  or  separations  formed  in   concrete  ground  slabs  and   concrete  masonry  walls  to  form  a   plane  of  weakness  and  thus   regulate  the  location  and  amount   of  cracking  resulting  from  drying   shrinkage,  thermal  stresses,  or   structural  movement   -­‐ Isolation  joints:  divide  a  large  or   geometrically  complex  structure   into  sections  so  that  differential   movement  or  settlement  can   occur  between  the  parts.              

Figure 44  movement  joint  details   (  

Figure 46  movement  joints  drawing  

Figure 45  Expansion  joints   (  

Ju Hyun  Son-­‐354978   20    



Composite  materials   Monolithic  or  composite   1. Monolithic  materials   -­‐ A  single  material   -­‐ Materials  combined  so  that   components  are   indistinguishable  (e.g.  metal   alloys)   2. Composite  materials   -­‐ Two  or  more  materials  are   combined  in  such  a  way  that  the   individual  materials  remain   easily  distinguishable   A  composite  is  formed  from:   -­‐ Combination  of  materials  which   differ  in  composition  or  form   -­‐ Remain  bonded  together   -­‐ Retain  their  identities  and   properties   -­‐ Act  together  to  provide  improved   specific  or  synergistic   characteristics  not  obtained  by   any  of  the  original  components   acting  alone  

Figure 47  examples  of  composite  material   (  

There are  four  main  types  of  composite   materials  such  as:  fibrous,  laminar,   particulate  and  hybrid.  

Figure 49  composite  material  used  (e-­‐learning)  

Figure 48  four  main  types  of  composite  material   (e-­‐learning0  

FRC (fibre  reinforced  cement)   -­‐ Made  from:  cellulose  (or  glass)   fibres,  Portland  cement,  sand  &   water   -­‐ Forms:  commonly  sheet  &  board   products  and  shaped  products   such  as  pipes,  roof  tiles  etc.   -­‐ Uses:  commonly  use  in  cladding   for  exterior  or  interior  walls,   floor  panels   -­‐ Benefits:  will  not  burn,  are   resistant  to  permanent  water  and   termite  damage,  and  resistant  to   rotting  and  warping.  It  is  a   reasonably  inexpensive  material  

Fibreglass -­‐ Made  from:  a  mixture  of  glass   fibres  and  epoxy  resins   -­‐ Forms:  commonly  flat  and   profiled  sheet  products  and   formed/  shaped  products   -­‐ Uses:  commonly  transparent  or   translucent  roof/  wall  cladding   and  for  preformed  shaped   products  such  as  water  tanks,   baths,  swimming  pools  etc.   -­‐ Benefits:  fiberglass  materials  are   fire  resistant,  weatherproof,   relatively  light  weight  and  strong  

Figure 50  Fibreglass  used  (e-­‐learning)  

Ju Hyun  Son-­‐354978   21    



Aluminium  sheet  composites   -­‐ Made  from:  aluminium  and   plastic   -­‐ Forms:  commonly  plastic  core  of   phenolic  resin  lined  with  two   external  skins  of  thin  aluminium   sheet   -­‐ Uses:  commonly  as  a  feature   cladding  material  in  interior  and   exterior  applications   -­‐ Benefits:  reduced  amounts  of   aluminium  are  required  and   lighter  weight,  less  expensive   sheets  can  be  produced,  which   are  weather  resistant,   unbreakable  and  shock  resistant.   A  variety  of  finishes  can  be   specified  and  seamless  details   can  be  achieved  with  careful   cutting,  folding,  bending  and   fixing.  

Timber composites   -­‐ Made  from:  combinations  of  solid   timber,  engineered  timber,   galvanized  pressed  steel   -­‐ Forms:  commonly  timbers  top  a   bottom  chords  with  gal.  Steel  or   engineered  board/  plywood   webs   -­‐ Uses:  beams  and  trusses   -­‐ Benefits:  minimum  amount  of   material  is  used  for  maximum   efficiency,  cost  effective,  easy  to   install,  easy  to  accommodate   services  

Figure 52  timber  composites  use  (e-­‐learning)  

Figure 51  aluminium  sheet  composites  uses  (e-­‐ learning)  


Fibre reinforced  polymers   -­‐ Made  from:  polymers  (plastic)   with  timber,  glass  or  carbon   fibres   -­‐ Forms:  common  often  associated   with  moulded  or  pultrusion   processed  products   -­‐ Uses:  commonly  decking   (&external  cladding),  structural   elements  such  as  beams  and   columns  for  public  pedestrian   bridges  using  glass  or  carbon   fibres,  carbon  fibre  reinforced   polymer  rebar   -­‐ Benefits:  high  strength  FRP   materials  with  glass  or  carbon   fibre  reinforcements  provide   strength  to  weight  ratio  greater   than  steel.  FRP  composite   materials  are  corrosion  resistant  

Figure 53  Fibre  reinforced  polymers  uses  (e-­‐ learning)  

Ju  Hyun  Son-­‐354978   22  



Activity:  off  campus  site  visit   Commercial building is constructed at 567collins street. The site entrance was available through 522 flinders lane. We had started getting information about some health & safety issues around the site and we were able to go up to 10th floor to have a look at the reinforced concrete of the slab processing.

Figure 54  before  pouring  the  concrete  

Figure  56  cranes  at  the  site  

Figure 55  pouring  the  concrete  

Actually, there  were  working  processes   of  casting  of  wet  joints.  The  labours   were  making  a  hole  into  the  exterior   wall  to  prepare  continuity  bars  of  wet   joints  and  set  up  formwork  for  casting.        

Figure 57  casting  of  wet  joints  

Ju Hyun  Son-­‐354978   23    



Figure 59  load  transfer  diagram  for  figure  191  

The following  diagram  and  picture  will   show  the  bolted  connection  in  the  real   site.     Figure  58  structures  

In figure  191,  people  are  working  on  the   flooring  of  next  level.  It  has  steel  column   and  it  braced  each  other.  It  also  consists   of  composite  beam  above.  

Figure 61  bolted  connection  

Figure 60bolted  connection  drawing  

Ju Hyun  Son-­‐354978   24    


The following  diagram  and  picture  are   showing  the  column  at  the  ground.  It  is   designed  for  the  visibly  sustainable  as  it   supports  the  building.  

Figure 62  load  transfer  through  the  column  to  the   ground  


Figure 63  visibly  sustainable-­‐designed  columns  

Figure 64  Insulation  material  

Ju Hyun  Son-­‐354978   25    


LOGBOOK   Glossary   1. Sandwich  panel   -­‐  Aluminium  composite  panel   also  aluminium  composite   material,  is  a  type  of  flat  panel   that  consists  of  two  thin   aluminium  sheets  bonded  to  a   non-­‐aluminium  core.  ACPs  are   frequently  used  for  external   cladding  of  buildings,  for   insulation  and  for  signage.   2. Bending   -­‐Shape  of  force  into  a  curve  or   angle.   3. Skirting   -­‐  a  wooden  board  running  along   the  base  of  an  interior  wall.   4. Composite  beam   -­‐  A  steel  beam,  which  has   concrete  decking  above  it,  and   which  is  connected  to  the   concrete  by  shear  connectors,   which  cause  the  steel  and  the   concrete  to  act  together.   5. Shadow  line  joint   -­‐  is  designed  for  more  stout   panels  around  ¾”  thickness,  but   mimics  the  standard  shadow  line  

system when  installed.  This   system  allows  for  the  use  of  thin   laminates  on  a  much  sturdier   backer  and  creates  a  stronger   and  longer-­‐lasting  panel.     6. Cornice   -­‐  is  generally  any  horizontal   decorative  moulding  that  crowns   a  building  or  furniture  element-­‐ the  cornice  over  a  door  or   window,  for  instance,  or  the   cornice  around  the  top  edge  of  a   pedestal  or  along  the  top  of  an   interior  wall.    

Ju Hyun  Son-­‐354978   26    




Ju Hyun  Son-­‐354978   27    




Dynamic  loads   Dynamic  loads  are  applied  suddenly  to  a   structure,  often  with  rapid  changes  in   magnitude  and  point  of  application.   Under  a  dynamic  load,  a  structure   develops  inertial  forces  in  relation  to  its   mass  and  its  maximum  deformation   does  not  necessarily  correspond  to  the   maximum  magnitude  of  the  applied   force.  The  two  major  dynamic  loads  are   wind  loads  and  earthquake  loads.      


Wind loads  are  the  forces  exerted   by  the  kinetic  energy  of  a  moving   mass  of  air,  assumed  to  come   from  any  horizontal  direction.   The  structure,  components,  and   cladding  of  a  building  must  be   designed  to  resist  wind-­‐including   sliding,  uplift,  or  overturning.  

An earthquake  consists  of  a  series  of   longitudinal  and  transverse  vibrations   induced  in  the  earth’s  crust  by  the   abrupt  movement  of  plates  along  fault   lines.  The  shocks  of  an  earthquake   propagate  along  the  earth’s  surface  in   the  form  of  waves  and  attenuate   logarithmically  with  distance  from  its   source.    

Figure 65  wind  load

Figure 66  Wind  diagram  

      Figure  67  structure  moving  diagram  by   earthquake                                                                                                                                                                                                                                                                                                                                                                                                                                                           Ju  Hyun  Son-­‐354978   28    



Building  materials   Consist  the  major  types  of  building   materials,  their  physical  properties,  and   their  uses  in  building  construction.  The   criteria  for  selecting  and  using  a   building  material  include  those  listed   below.     Note:  all  the  building  materials   properties  and  their  uses  in  building   construction  have  already  been   introduced  in  previous  weeks  logbook.     Activity:  In  detail  part2   Continuous  from  week  8   The  finished  details  with  sebastian’s   part  displayed  in  following  picture:  

Figure 69  Material  used  in  drawing  

Figure 68  roof  &  ceiling  and  function  room   drawing  put  together  

My part  of  drawing  is  the  bottom  part   and  it  is  roof  &  ceiling.  It  consists  of   glass,  timber,  insulation  material,  sawn   wood,  glass  and  plywood.          

Also 3D  drawing  is  required  in  this   workshop  session  by  using  a  tracing   paper.  Also,  we  had  visite  the  site  to   have  a  look  at  the  part  of  the  drawing,   however,  our  part  was  roof  &  ceiling,   therefore,  and  we  weren’t  able  to  see   our  part  from  the  site.  But,  we  were  still   able  to  see  some  other  member’s  part   such  as  back  of  the  oval  pavilion  and  the   frame  of  the  door  (window).         Ju  Hyun  Son-­‐354978   29  



Figure 70  3D  drawing  of  the  roof  &  ceiling  

Glossary 1. Shear  wall   -­‐  is  a  wall  composed  of  braced   panels  to  counter  the  effects  of   lateral  load  acting  on  a  structure.   Wind  and  seismic  loads  are  the   most  common  load  braced  wall   lines  are  designed  to  counteract.  

2. Soft storey   -­‐  is  a  multi-­‐storey  in  which  one  or   more  floors  have  windows,  wide   doors,  large  unobstructed   commercial  spaces,  or  other   openings  in  places  where  a  shear   wall  would  normally  be  required   for  stability  as  a  matter  of   earthquake  engineering  design.   3. Braced  frame   -­‐  is  a  structural  system  which  is   designed  primarily  to  resist  wind   and  earthquake  forces.  Members   in  a  braced  frame  are  designed  to   work  in  tension  and   compression,  similar  to  a  truss.   Braced  frames  are  almost  always   composed  of  steel  members.   4. Life  cycle   -­‐  the  series  of  changes  in  the  life   of  an  organism  including   reproduction.   5. Defect   -­‐  A  shortcoming,  imperfection,  or   lack   6. Fascia   -­‐  a  board  or  other  flat  piece  of   material  covering  the  ends  of   rafters  or  other  fittings  

7. Corrosion -­‐  Damage  caused  to  metal,  stone,   or  other  materials  by  corrosion.   8. IEQ   -­‐  Indoor  environmental  quality:   encompasses  IAQ,  thermal   comfort,  daylighting,  views,  etc.    

Ju Hyun  Son-­‐354978   30    



Ju Hyun  Son-­‐354978   31    




Appendix   Construction  workshop   I  was  placed  in  group  4  which  we  have   to  use  the  materials  of  1200X3.2X90mm   plyX1  and  1200X42X18mm  pineX3.  

We  are  also  required  to  construct  a   structure  that  will  span  1000mm  and   will  take  a  point  load  at  its  centre.  Also,   the  required  maximum  height  of  the   structure  is  400mm.   For  this  construction  workshop  we  are   asked  to  use  sundry  nails  and  screws  to   assist  with  joining,  and  hammers,  saws,   screwdrivers  and  marking  tools  to  assist   in  the  process.     We  were  planning  to  place  plywood   between  two  pine  woods  and  place   another  cutted  pine  wood  as  a  bracing  to   transfer  the  load  as  shown  in  following   figures  and  drawings.  

Figure 73  Load  transfer  from  the  top  to  bottom   through  the  vertical  bracing  

As a  load  applied  to  centre  of  the   structure,  the  structure  started  to   deflect.  As  the  load  is  getting  larger,   firstly  plywood  had  a  crack  and  pine   wood  finally  got  broken.  The  results  of   the  load  and  the  deflection  at  failure   point  will  be  displayed  in  the  following   table:        

Figure 71  place  plywood  between  two  pine  woods  

Figure 72  Completed  a  structure  

Ju Hyun  Son-­‐354978   32    



Table  1  structure  failure  and  the  deflectionat   certain  load  

Trial Load(kg)   Deflec failure   tion(   mm)   1   110   15     2   115   20     3   168   45   Plywood  crack   4   140   70   Pine  broken     Our  structure  was  pretty  strong  but  one   of  the  other  group  placed  pinewood  as  a   truss  had  the  strongest  structure  as   shown  in  the  following  picture:  

Figure 75  Other  group's  structure  load  transfer   diagram  

Figure 77  As  a  results  of  applying  load  

Figure 74  other  group's  structure  


Figure 76  Applying  load  to  the  structure  

        Ju  Hyun  Son-­‐354978   33  

Juhyun son 354978 a01 final submission part2  
Read more
Read more
Similar to
Popular now
Just for you