Ecuaciones diferenciales ordinarias para estudiantes texto

Page 167

144

7 Métodos aproximados

por esta técnica, cuya importancia en física es difícil sobrevalorar. Los métodos numéricos son hoy día tan importantes en la práctica que merecen asignatura aparte, pero al menos discutiremos los aspectos más elementales para descorrer parcialmente la cortina que oculta la «magia» de las eficaces rutinas que están cada día más al alcance de todos (véase la bibliografía a partir de la página 321). El nivel elemental del capítulo hará que consideremos muchas veces tan solo el caso de una única ecuación diferencial de primer (o segundo) orden, para evitar innecesarias complicaciones técnicas (e, incluso, de notación). No obstante, la mayor parte de lo dicho puede extenderse con facilidad a ecuaciones de orden superior y sistemas de ecuaciones: a menudo basta añadir un índice para enumerar las variables dependientes o las derivadas de la incógnita.

7.1. Símbolo de orden de magnitud Diremos que la función f (x) es del orden de magnitud de g(x) cuando x → x0 , y escribiremos f (x) = O (g(x)), si el cociente f (x)/g(x) se mantiene acotado cuando x → x0 , lo que sucede en particular si l´ımx→x0 f (x)/g(x) existe y es finito. La «O» recibe el nombre de símbolo de Landau o de Bachmann-Landau y es muy utilizada como abreviatura en cálculos aproximados. A menudo se omite la mención explícita del límite x → x0 si el valor de x0 (normalmente 0 ó ∞) se infiere del contexto. E JERCICIO 7.1 Demuestre que, para x0 a determinar, se cumple tanh x = O(x), tanh x = x + O(x3 ) y tanh x = O(ex ). ¿Es cierto que tanh x = O(x2 )? ¿Y que tanh x = O(2x)? E JERCICIO 7.2 Demuestre las siguientes relaciones: O(f ) + O(g) O(f )O(g) O(O(f ))

= O(|f | + |g|), = O(f g),

(7.1) (7.2)

= O(f ).

(7.3)

√ E JERCICIO 7.3 Compruebe que cuando ǫ → 0 las funciones (a) 2/ 3 + e−ǫt , (b) 1 + sin(ǫt/8), (c) 1 + tan(ǫt/8), y (d) exp(ǫt/8) son equivalentes módulo O(ǫ2 ). ¿Qué sucede cuando t → ∞?

7.2. Series de potencias Debido a lo dicho en el apartado 1.4, un método aproximado casi obvio consiste en construir una serie de potencias y=

∞ X

n=0

cn (x − x0 )n

(7.4)

para la solución de un problema de condiciones iniciales de la forma y ′ = f (x, y), y (x0 ) = y0 .

(7.5) (7.6)

Nótese que el planteamiento es distinto al hecho en el capítulo 6, ya que allí se trataba de hallar todas las soluciones de una ecuación lineal, mientras que ahora queremos una solución particular de una ecuación no necesariamente lineal. Además, en aquél capítulo se calculaban


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.