Chapter 18

Page 30

6. \Xfhich of the following statements about the DNA in one of your brain cells is true? a. Most of the DNA codes for protein. b. The majority of genes are likely to be transcribed. c. Each gene lies immediately adjacent to an enhancer. d. Many genes are grouped into operon-like clusters, e, It is the same as the DNA in one of your heart cells,

7. Cell differentiation always involves a. the production oftissue-specific proteins, such as muscle actin. b. the movement of cells. c. the transcription of the myoD gene. d. the selective loss of certain genes from the genome. e. the cell's sensitivity to environmental cues, such as light or heat. 8. \Xfhich of the following is an example of post-transcriptional control ofgene expression? a. the addition of methyl groups to cytosine bases of DNA b, the binding of transcription factors to a promoter c, the removal of introns and splicing together of exons d, gene amplification contributing to cancer e, the folding of DNA to form heterochromatin 9. \VJthin a cell, the amount of protein made using a given mRNA molecule depends partly on a. the degree of DNA methylation. b. the rate at which the mRNA is degraded. c. the presence of certain transcription factors. d. the number ofintrons present in the mRNA. e. the types of ribosomes present in the cytoplasm. 10, Proto-oncogenes can change into oncogenes that cause cancer. \Xfhich of the following best explains the presence of these potential time bombs in eukaryotic cells? a. Proto-oncogenes first arose from viral infections. b. Proto-oncogenes normally help regulate cell division. c. Proto-oncogenes are genetic "junk." d. Proto-oncogenes are mutant versions of normal genes, e. Cells produce proto-oncogenes as they age. II,

I·UoW"l The diagram below shows five genes (with their enhancers) from the genome of a certain species. Imagine that orange, blue, green, black, red, and purple activator proteins exist that can bind to the appropriately color-coded control elements in the enhancers of these genes. Promoter

Gene 1

Gene 3 II

Gene 5

380

UNIT THREE

Genetics

a. Draw an X above enhancer elements (of all the genes) that would have activators bound in a cell in which only gene 5 is transcribed. Which colored activators would be present? b. Draw a dot above all enhancer elements that would have activators bound in a cell in which the green, blue, and orange activators are present. \Vhich genets) would be transcribed? c. Imagine that genes I, 2, and 4 code for nerve-specific proteins, and genes 3 and 5 are skin specific. \Vhich activators would have to be present in each cell type to ensure transcription of the appropriate genes? For Self-Qui: answers, see Al,pendix A.

-MH'·M Visit the Study Area at www.masteringbio.comfora Practice Test.

EVOLUTION CONNECTION 12, DNA sequences can act as "tape measures of evolution" (see Chapter 5), Scientists analyzing the human genome sequence were surprised to find that some of the regions of the human genome that are most highly conserved (similar to comparable regions in other species) don't code for proteins. Propose a possible explanation for this observation.

SCIENTIFIC INQUIRY 13, Prostate cells usually require testosterone and other andro· gens to survive. But some prostate cancer cells thrive despite treatments that eliminate androgens. One hypothesis is that estrogen, often considered a female hormone, may be actio vating genes normally controlled by an androgen in these cancer cells. Describe one or more experiments to test this hypothesis. (See Figure 11.8 to review the action of these steroid hormones.) 8iologicalinquiry: A Workl>ook oflnveJltigative Cases Explo.... gene ....gul.tion by the hedgehog pathway with the ease 'Shh: Silencing the Hedgehog Pathw.y·

SCIENCE, TECHNOLOGY, AND SOCIETY 14, Trace amounts of dioxin were present in Agent Orange, a de· foliant sprayed on vegetation during the Vietnam War. Animal tests suggest that dioxin can cause birth defects, cancer, liver and thymus damage, and immune system suppression, some· times leading to death. But the animal tests are equivocal; a hamster is not affected by a dose that can kill a guinea pig. Dioxin acts somewhat like a steroid hormone, entering a cell and binding to a receptor protein that then attaches to the cell's DNA. How might this mechanism help explain the vari· ety of dioxin's effects on different body systems and in different animals? How might you determine whether a type of illness is related to dioxin exposure? How might you deter· mine whether a particular individual became ill as a result of exposure to dioxin? Which would be more difficult to demonstrate? Why?


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.