AMATEUR-BUILT AIRCRAFT and ULTRALIGHT FLIGHT TESTING HANDBOOK

Page 49

AC 90-89A

b. Climbs and descents to preselected altitudes. (monitor engine performance) c. Airspeed indicator in-flight accuracy check NOTE: After each test flight, ALL DISCREPANCIES must be cleared before the next flight. The aircraft also must be THOROUGHLY INSPECTED prior to the next flight. NOTE: It is recommended that all flight test maneuvers be preceded with two 90 degree clearing turns to ensure that the flight test area is free of other aircraft.

3.

GEAR RETRACTION.

a. Before the gear is retracted in flight for the first time, it is advisable to put the aircraft up on jacks and perform several gear retraction tests, including the emergency gear extension test. These tests will determine if, in the last three hours of flight testing, any structural deformation or systems malfunctions have occurred. In addition to the gear retraction test, the pilot/chase pilot/ground crew should use this time to review the aircraft’s kit/ designer instructions and emergency checklist procedures for malfunctioning gear and plan accordingly. If at any time the aircraft has suffered a hard landing or side loading on the gear during flight testing, the aircraft and its gear should be tested for operation and condition on the ground. b. The first gear retraction test should be conducted with the aircraft flying straight and level at or above 5,000 feet AGL, over an airport or emergency field. The airspeed must be well under the maximum landing gear retraction airspeed. When the gear is being retracted, note if there is any tendency for the aircraft to yaw, pitch, or roll. Record what changes to the aircraft’s trim are required to maintain straight and level flight. If there are no adverse flight reactions or system malfunctions, cycle the gear several times. When satisfied with the straight and level gear retraction test, try an emergency gear extension but only if this is practical. c. With the gear extended, slow the aircraft to 1.3 times the pre-determined stall speed, stabilize, lower the flaps to the take-off position, trim, and maintain straight and level flight. d. Simulate a normal takeoff by increasing rpm to full power. Raise the nose 3 degrees, trim, 42

5/24/95

and then retract the gear. Observe the following: aircraft reaction, such as pitch or roll; length of time for gear to retract; trim requirements;, and the time necessary to establish a 1,000-foot climb before leveling off. e. Practice a simulated takeoff several times to ensure that the aircraft’s response is predictable and the gear retraction system is mechanically reliable. 4. CLIMBS AND DESCENTS. The purpose of these tests is to monitor engine performance and reliability. The pilot should start the test only after the aircraft has been flying straight and level for a minimum of 10 minutes to stabilize engine oil pressure and temperatures. a. Engine oil pressure and temperatures must be kept within the manufacturer’s limits at all times during these tests. High summer temperatures may place restrictions on the flight test program because both oil and cylinder head temperatures will increase 1 degree for each 1 degree increase in outside temperature. (1) Climbs. Start the first climb at a 15 degree climb angle, full power, at a predetermined designated altitude (e.g., 1,000 feet). Maintain the climb angle for 1 minute. Record the engine temperatures and pressures. Reduce power, stabilize the engine temperature, and repeat the test. For the second climb test, the Flight Test Plan should call for increasing the climb time -- record the results. When satisfied that an engine cooling problem does not exist at this climb angle, repeat the tests using steeper climb angles until the pilot has reached 15 degrees or encountered an engine manufacturer’s limit or a 5-minute climb period at full throttle has been reached. (2) Descents. Should begin above 5,000 feet AGL with both the engine temperatures and pressures stabilized. (i) The test pilot should use carb heat and clear the airspace below him before starting the descent. The first descent should be at a shallow angle, at low rpm and last for 30 seconds, not exceeding 1.5 times the estimated stall speed of the aircraft. During long, low power descents, the pilot must be on the alert for too rapid cooling of the engine usually identified by a signifi-


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.