Solutions to H.C.Verma Part 1

Page 70

Chapter 8 T=

2

mv m8gl  = 8 mg R l

b) Let the velocity at C be V3 1/2 mv12 = 1/2 mv32 + mg (2l)  1/2 m (log l) = 1/2 mv32 + 2mgl  v32 = 6 mgl So, the tension in the string is given by Tc =

6 glm mv 2  mg = l l

mg = 5 mg

c) Let the velocity at point D be v4 Again, 1/2 mv12 = 1/2 mv42 + mgh 1/2 × m × (10 gl) = 1.2 mv42 + mgl (1 + cos 60°)  v42 = 7 gl So, the tension in the string is TD = (mv2/l) – mg cos 60° = m(7 gl)/l – l – 0.5 mg  7 mg – 0.5 mg = 6.5 mg. 54. From the figure, cos  = AC/AB  AC = AB cos   (0.5) × (0.8) = 0.4. So, CD = (0.5) – (0.4) = (0.1) m Energy at D = energy at B 1/2 mv2 = mg (CD) v2 = 2 × 10 × (0.1) = 2 So, the tension is given by,

A

T D

mg

37°

0.5m

mv 2/ r B

 

0.5m

C

55. Given, N = mg As shown in the figure, mv2 / R = mg  v2 = gR …(1) Total energy at point A = energy at P

k

mgR  2mgR 2

N

1/2 kx2 =

R P

m A

[because v2 = gR]

0.1 kg

mv 2  2   mg = (0.1)   10  = 1.4 N. T= r  0 .5 

2

mv /R

 x2 = 3mgR/k  x = (3mgR ) / k . 56. V = 3gl 2

v

2

1/2 mv – 1/2 mu = –mgh v2 = u2 – 2g(l + lcos)  v2 = 3gl – 2gl (1 + cos ) …(1) Again, mv2/l = mg cos  v2 = lg cos  From equation (1) and (2), we get 3gl – 2gl – 2gl cos  = gl cos 

l

m

l

u=3 gl

mv2/R

T=0

8.11

mg


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.