Paper28

Page 5

International Journal of Engineering Research Volume No.2, Issue No.2, pp : 161-166 11. DeGeiso R.C.; Donaruma L.G.; Tomic, E A., Ind. Eng. Chem. Process Des. Dev., ACS pub.; 1963; 2 (1):43–44. 12. Michael P., Lingala P.; Juneja H., Paliwal L.; J. Appl. polym.Sci.; 2004; 92:2278. 13. Masram D.T., Kariya K.P., Bhave N.S.; E-J. of Chemistry; 2010;7(2), 564- 568. 14. Ozawa T.; Applicability of Friedman Plot; J. Thermal Analysis; 1986; 3l: 547-551. 15. Manvalan R.; Patel M.M.; J. Macromolecular Chem.; 1983; A-20 (9):907-925. 16. Talati A.M and Mistry V.N.;Materials Sc. and Eng. ; 1972; 10 : 287290. 17. Han G., Shi G.; Thin Solid Films; 2007; 515, 17: 6986-699. 18. Kharadi G. J.; Panchani S. C.; Patel K. D.; Int. J.of Polym.Mat.; 2010; 59, 8 : 577 – 587. 19. Kanda S.,Kawaguchi S.; J.Chem.Phy.;1961;34; 1070. 20. Kanda S. , Kawaguchi S.; Bulletin of the Chemical Society of Japan; 1957; 30, 2: 192-193. 21. Masram D.T., Kariya K.P., Bhave N.S.; epolymers; 2007; ISSN 1618-7229, 75. 22. Masram D.T., Kariya K.P., Bhave N.S.; High Perform. Polym; 2010; 22, 8:1004 -1016.

(ISSN : 2319-6890) 01 April 2013

23. Jadhao M.M., Paliwal L.J., Bhave N. S.; J. Appl. Polym. Sci.; 2005, 96, 5; 1605 - 1610. 24. Masram D.T., Kariya K.P., Bhave N.S.; Thermans DAE-BRNS 6th National Symposium & workshop on Thermal Analysis, India; 2008: 329-331. 25. Freeman E.S., Carroll B.J.; Phys. Chem. 1958; 62, 4,: 394–397. 26. Freeman E.S., Anderson D.A.;J. Polym. ; 1961; 54, 159: 253 – 260. 27. Sharp J.B.; Wentworth S.A.;Anal. Chem. 1969; 41 (14): 2060–2062. 28. Coats A.W.; Redfen J.P.; J. of Polym. Sc. Part B: Polymer Letters 2003;3, 11:917 – 920. 29. Ozawa T.; J. Thermal Analysis;1971;12, 3: 150-158. 30. Jacobs P.W.M.; Tompkins F.C.; Chemistry of Solids State, E.G., Garner Publication, London;1955;188. 31. Azaroff L.V.; McGraw Hill Inc. New York ; 1960. 32. Dunlop W.V.;, Wiley, New York; 1957;189. 33. Fanun M.; J.Molecular Liquids; 2007; 135, 1-3:5-13. 34. Masram D.T., Kariya K.P., Bhave N.S;Archives of Applied Science Research; 2010;2(2):153-161. 35. Masram D.T., Kariya K.P., Bhave N.S.; Journal of Chemistry (JC); 2011; 01:1-8.

Table1: Result of thermogravimetric analysis of SDBFresin

Decomposition Temp. (T) 282

Half Decomposition Temp. (T*) 499

Activation Energy kJ/mole SharpFreemanWentwort Carroll h FC SW 26.80 17.2

Kinetic parameters by FC Free Entropy energy frequency change change factor Z ∆S(J) ∆F(kJ) (S-1) 8.3 22.66 994.52

Apparent entropy S*(J) -22.78

n 1.03

Table 2: Evaluation of Activation Energy of Conduction SDBF Resin Diameter of the pellet = 1.287 Surface area of the pellet (A) =  r2 = 3.142 x (0.643) 2 = 1.301 cm2 Thickness of pellet (l) = 0.196 cm. A/l = 6.995 cm.

Temp (K)

1000/T (K-1)

Resistance in Ohm 'R'

Resistivity p = RA/l (Ohm.cm)

Electrical Conductivity σ = 1/ρ (Siemen.cm-1)

Logσ

313 318 323 328 333 338 343 348

3.1949 3.1447 3.0960 3.0488 3.0030 2.9586 2.9155 2.8736

8.65 X 109 6.33 X 109 4.59 X 109 3.21 X 109 1.46 X 109 9.60 X 108 7.84 X 108 5.67 X 108

5.74 X 1010 4.20 X 1010 3.05 X 1010 2.13 X 1010 9.69 X 109 6.37 X 109 5.20 X 109 3.76 X 109

1.74 X 10-11 2.38 X 10-11 3.28 X 10-11 4.69 X 10-11 1.03 X 10-10 1.57 X 10-10 1.92 X 10-10 2.66 X 10-10

-10.7590 -10.6234 -10.4838 -10.3285 -9.9864 -9.8043 -9.7163 -9.5756

IJER@2013

Page 169


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.