{' '} {' '}
Limited time offer
SAVE % on your upgrade.

Page 24

PŘESNÉ LITÍ

P  

2

cos   

2  0.2

cos(136)  288 N / m2

PP0. P  222 cos 136 2. 0.22 cos( 288 5 2 0.5)  2882 N / m2 2001 288 . 5[0 Nm cos( 2cos m //s/ms PvP  ]]0 cos( ]288 /.064 m.64 vf[vg[vrrcos 000[...67  )136 ])0.5N0288 0001 .672136  f  g   8400 r 0 . 001 liq 2U. .2 K.8400  K.liqMaity2 – 0A. 2 Datta S. Roy – Pramanick – Kinetics of liquid metal flow in gating design of investment casting production P  v cos    cos(136)  288 N P. / mK. f 0.001 C DC  vrf 0.95 0.95 D v 1 v P 288 0.5 1  0.5 2 v f  [v2g 22  ]  [02.672288  288 ]0.5  0.64m / s P P 0.5 0.5 velocity References Therefore, final will vvf f [v[gvg  ]liq ] [0.67   8400 ]0.5  ]0be, .64m0/.s64m / s [0.67 liq 8400 P 8400 liq 0.5 288 2 2 6 6 3 3 v f v[fvvvfg 0.95 ]  [0Q.67 .64 s.99 A v gv 2]0..125 .110 m1./199 mm / s/ s iQ 010 C i  gA g g 8400 [1] BARNALI MANDAL; PRASANTA KUMAR DATTA: Hot CCDD vf  0.95 liq 0.95 D v 1 1v v1f 6 6 3 3 mold casting process of ancient East India and BanglaQ fQf C  2.21.110 1.199 mm/ s/ s CD   0.95  DCADgAvggvg 0.95 0.95  10   .99 v1 desh. China Foundry, 2010, 7.2 May, 171–177. ISSN 6 3 QAi v Ag v2g.110 2.1610 31/.99 Qi Q 1.99m s m /s Vg gA v  2.15 510 6  1.99m 3 / s

Initial discharge:t f

 10 1g .27  10  6.3 s i mV g1.27 tf  m   6.3 s Q 1.99  10 6 6 6

m 6 3/ s 3 A v1g.v99  210 .10.95 10 2.611.110 99 f gA fQ Final discharge: Qf Q QC AC .99 fiD 6m /1s.99m3 / s g vDg g 0.g95  2.1  10 6 3

3

Q f  CD Ag vg  0.95  2.1  10  1.99m / s

V QVf m1.27C1D10 .27 Ag5vg106.355 0s .95 z S2.1  1064 t f t f m   64 .3 s  5  Filling Time: Vm  d1.Cu 27610d 6  Q 1 . 99  10 Q 1 . 99  10 S  6.3zs t   f f v d f 5

45 1.99m3 / s

 7.28  10 3 m 10 6 Q0.067  0 . 002 gvg d 8400 8400 . 67  0 . 002 C 1.99  10  2814 ReRe  Vmf 1.27  10 5   2814 tf  0 .004  6.3 s .0004  for 6 zS 45 Checking No: 3 Reynold’s Q 1 . 99  10 f 4 4  5  7.28  10 m zC 10 vgvd d 8400  0.67  0.002 8400  0.67  0.002  2814 RRe  v g d  8400  2814 0.67  0.002 e 0.004 0.004  2814 Re   g  vg d 8400 00..004 67  0.002  2814 Re  time is small and R < 20,000. Filling 0.004  So, Design satisfactory. AS z d z Sprue design:  Cu , hence S  4 Cu For first part of Dam Sprue: ACu zS d Cu zS so, considered as cup. z Cu , henceTop d S 10 mm z Cu height is slightlyz S diverging, 45 d Cu  d S  4  5 z4  7.28 35 10 3 m 4 S10 zS d Cu z S correction,d CuASAS dz CS zCuz4Cu, hence d4Sd S 4 4z Cu2z Cu .7  10 3 m Aspiration  zzzS z  2 45 10 45 45 3 d A Ad  4 z zS S C 5  4 d d 7.28z z 10 33m CudCu dS 4 4 S ddCu 

S

Cu77 .28SS10 10 mm d554 4 zCu .28

zzCz C S 10 S Cu 10 C zS  Cu  410 35 3 d45 4  2  4 Thus  2.cup 7  10diameter, m ACu AS z S z Cuz S d Cu zSS 4 z Cu 3   z A z d 4 4 d d    5  S S  7.28 zC 10 Cu S zCuS z  4 zCuS  10 m ACu d Cu AACu z S CVolume d10 zS Cu z d z S S M Cu  4 Cu Cz For the next part of Dam ACu Sprue: zS S Area d Cu z z , hence d S Consider the dam asAaS cup.  4 Cu  CuTherefore, −3 z S Volume ACuGate S × 10 m Height +d CuDamzHeight SprueM Height = Sprue c, = 1.56 Area A CuCu z S S

dddS 3 zzCu A z z , hence AAS z S zzCu 35 × 10−3 m d z z S Cu S AACu z d z C Cu Cu Cu SS Cu SS d z AS z  Cu , hence S  4 Cu −3 .2 Mc. ThusThus Mr cup =1.87 × 10 m ACud  4 zzzSS S  2  44 435 z S33m 35dCu2.7  10 35 diameter, dddCu 10 3mm SS S4 4 22 22.7.710 Cudd Cu zzCz C 10 Volume 10 10 C MC  35 Area z S 3 4 d Cu  d S   Riser design:  dr 2d4r 10  ds 2.7dr10 m Volume of−3Riser z C Volume M    , = 1.56 × 10 m M r c Modulus the casting, M C = 4  d  d Heatofdissipatin g−3Area 4 s Area r Volume Volume −3 Here Mc, = 1.56 × 10 m M Volume MCCCM M = 1.2 M r c. Thus Mr =1.87 × 10 m  dr  dr  ds dr Area Area M . Thus M =1.87 × 10 −3 m Let,  Modulus of riser, Mr = 1.2 Area c r Volume 4  d r  d s Assume 4 cylindrical riser, −3 −3mM C  −3 × 10 MMcc,c,==1.56 1.56 × 10 m Area S  Cu Cu Cu hence hence 44 4r =1.87 c. Thus d Cu  d S M S S4 r 2Cu ,4 ,M 2.7 S10 m = 1.2 M Aspiration correction, d z A z z , hence 10

riser height = riser diameter = dr, Mr 

−3 rr r==1.2 1.2MMcc.c.Thus ThusMMrr r=1.87 =1.87××10 10−3−3mm × 10−3MM m MVolume c, = 1.56  d d d d of Riser

Heat dissipating Area

r

r

s

r

4 Mr =1.87 × 10−3 m  1.2 d r M d sc. Thus Mr4=

1672-6421. [2] BARUN KUMAR DAS; MILAN MUKHERJEE; PRADIP KUMAR SAHA; PRASANTA K. DATTA: Gating System in Thin Walled Copper Alloy Casting, International Conference on Mechanical, Industrial and Energy Engineering 2014, Khulna Bangladesh. [3] BARUN KUMAR DAS; MILAN MUKHERJEE; PRADIP KUMAR SAHA; PRASANTA K. DATTA: Liquid Metal Flow In Traditional Casting of Eastern India, Proceedings of the 7th IMEC & 16th Annual Paper Meet, January, 2015. [4] BARUN KUMAR DAS; PRANAB K CHATTOPADHYAY; PRASANTA K. DATTA: Foundry Principle of Ancient Indian Metal Casting Through Modern Engineering, ASTRA 16, Pune, 9 – 11 January 2016. [5] SOUMYAJIT ROY; BARUN KUMAR DAS; PRASANTA KUMAR DATTA: Application of Fluid Flow Mechanics in Gating Calculation of Investment Casting Production. International Journal of Mechanical and Production Engineering (IJMPE), 2016, 4(5), 73–79. ISSN 2320-2092 (print), ISSN 2321-2071 (online). [6] White, F. M.: Fluid Mechanics. New Delhi: WCB McGrawHill Publication, 1998, p. 185. [7] GEIGER, G. H.; POIRIER, D. R.: Transport Phenomena In Metallurgy. Sydney: Addison-Wesley Publishing Company, Menlo park, 973, p. 124. [8] HAALAND, H. T.: Flow and Heat Transfer in a Radially Spreading Liquid Metal Jet Related to Casting of Ferroalloys, Dr. ing. Thesis, Department of Materials Technology and Electrochemistry Norwegian University of Science and Technology, 2000, p. 88. [9] NAG, P. K.: Engineering Thermodynamics. New Delhi: Tata McGraw Hill Pvt. Ltd., 2009, p. 29. [10] STEFANESCU, D. M.: Science and Engineering of Casting Solidification. New York: Springer, 2002, p. 65. ISBN 978-0-387-74612-8. [11] BANSAL, R. K.: Fluid Mechanics and Hydraulic Machines. New Delhi: Laxmi Publication, 2010, p. 165. [12] ASM Handbook, Volume 15: Casting. ASM International, 1998, pp 1286, 1287. [13] ASM Handbook, Volume 15: Casting. ASM International, 1998, pp 1246, 1289. [14] http://www.engineeringtoolbox.com/dry-air-properties-d_973.html [15] https://en.wikipedia.org/wiki/Kerosene [16] http://www.insula.com.au/physics/1279/L8.html [17] http://www.etc-cte.ec.gc.ca/databases/Oilproperties/pdf/ WEB_Fuel_Oil_No._1_(Kerosene).pdf

Hence dr = 7.48 × 10 -3, m < Dam diameter (10 × 10 −3 m) In the investment casting, risers are not used by artisans. Riser Volume Volumeof Riser  dddrr rdddrr rdddss s  dddrr r Volume ofofRiser Riser M Mrr rsprue M  regular practice.  Gating design was and are combined in Heat 444 Heatdissipatin dissipatingggArea Area 444dddrr rdddss s Heat dissipatin Area found toVolume be satisfactory.   dr  dr  ds dr of Riser M r  of all items:   Volume Heat dissipating Area 4  d r  d s 4 −6 3 Volume of the casting, = 12.7 × 10 m ; Volume of the Dam Sprue = 3.2 × 10 −6 m3 Hot metal required: Considering 20% extra metal for Drossing & Spilling, the metal required. Therefore, Hot metal required: w = 1.2 × (Casting vol. + Dam sprue vol.) × Density of metal × 10 −3, kg = (12.7+3.2) ×10 −6 × 8400 ×1.2 = 160×10 −3 kg Yield of casting: 119 Casting Weight  100%  74.37% Peer-reviewers: Recenzenti Yield of casting   100% Yield of casting  160 Weight of total metal prof. Ing. Milan Horáček, CSc. Casting 119 Weight  100% Yield of casting  119  100%  74.37% prof. Ing. Augustin Sládek, PhD. t   Yieldofofcasting casting  100%  74.37%  100% Yield 160 Weight 160of total metal metal

Casting 119 119 CastingWeight Weight  100% Yield of casting  119 Casting Weight Yield Yieldofof casting casting 100% 100%74.37% 74.37% 100% 74.37% Yieldof casting 100% Yield Yield ofof casting casting 100% 160 Weight of total 160 160 Weightofoftotal totalmetal metal Weight metal 154 S l é vá re nsCasting t v í . LWeight X V . k v ě te n – č e r v e n 2017 . 5 – 6119  100%  74.37% Yield of casting   100% Yield of casting  160 Weight of total metal

Profile for INA SPORT spol. s r.o.

Slevarenstvi 5-6 2017  

Slevarenstvi 5-6 2017  

Profile for inasport