PŘESNÉ LITÍ
P
2
cos
2 0.2
cos(136) 288 N / m2
PP0. P 222 cos 136 2. 0.22 cos( 288 5 2 0.5) 2882 N / m2 2001 288 . 5[0 Nm cos( 2cos m //s/ms PvP ]]0 cos( ]288 /.064 m.64 vf[vg[vrrcos 000[...67 )136 ])0.5N0288 0001 .672136 f g 8400 r 0 . 001 liq 2U. .2 K.8400 K.liqMaity2 – 0A. 2 Datta S. Roy – Pramanick – Kinetics of liquid metal flow in gating design of investment casting production P v cos cos(136) 288 N P. / mK. f 0.001 C DC vrf 0.95 0.95 D v 1 v P 288 0.5 1 0.5 2 v f [v2g 22 ] [02.672288 288 ]0.5 0.64m / s P P 0.5 0.5 velocity References Therefore, final will vvf f [v[gvg ]liq ] [0.67 8400 ]0.5 ]0be, .64m0/.s64m / s [0.67 liq 8400 P 8400 liq 0.5 288 2 2 6 6 3 3 v f v[fvvvfg 0.95 ] [0Q.67 .64 s.99 A v gv 2]0..125 .110 m1./199 mm / s/ s iQ 010 C i gA g g 8400 [1] BARNALI MANDAL; PRASANTA KUMAR DATTA: Hot CCDD vf 0.95 liq 0.95 D v 1 1v v1f 6 6 3 3 mold casting process of ancient East India and BanglaQ fQf C 2.21.110 1.199 mm/ s/ s CD 0.95 DCADgAvggvg 0.95 0.95 10 .99 v1 desh. China Foundry, 2010, 7.2 May, 171–177. ISSN 6 3 QAi v Ag v2g.110 2.1610 31/.99 Qi Q 1.99m s m /s Vg gA v 2.15 510 6 1.99m 3 / s
Initial discharge:t f
10 1g .27 10 6.3 s i mV g1.27 tf m 6.3 s Q 1.99 10 6 6 6
m 6 3/ s 3 A v1g.v99 210 .10.95 10 2.611.110 99 f gA fQ Final discharge: Qf Q QC AC .99 fiD 6m /1s.99m3 / s g vDg g 0.g95 2.1 10 6 3
3
Q f CD Ag vg 0.95 2.1 10 1.99m / s
V QVf m1.27C1D10 .27 Ag5vg106.355 0s .95 z S2.1 1064 t f t f m 64 .3 s 5 Filling Time: Vm d1.Cu 27610d 6 Q 1 . 99 10 Q 1 . 99 10 S 6.3zs t f f v d f 5
45 1.99m3 / s
7.28 10 3 m 10 6 Q0.067 0 . 002 gvg d 8400 8400 . 67 0 . 002 C 1.99 10 2814 ReRe Vmf 1.27 10 5 2814 tf 0 .004 6.3 s .0004 for 6 zS 45 Checking No: 3 Reynold’s Q 1 . 99 10 f 4 4 5 7.28 10 m zC 10 vgvd d 8400 0.67 0.002 8400 0.67 0.002 2814 RRe v g d 8400 2814 0.67 0.002 e 0.004 0.004 2814 Re g vg d 8400 00..004 67 0.002 2814 Re time is small and R < 20,000. Filling 0.004 So, Design satisfactory. AS z d z Sprue design: Cu , hence S 4 Cu For first part of Dam Sprue: ACu zS d Cu zS so, considered as cup. z Cu , henceTop d S 10 mm z Cu height is slightlyz S diverging, 45 d Cu d S 4 5 z4 7.28 35 10 3 m 4 S10 zS d Cu z S correction,d CuASAS dz CS zCuz4Cu, hence d4Sd S 4 4z Cu2z Cu .7 10 3 m Aspiration zzzS z 2 45 10 45 45 3 d A Ad 4 z zS S C 5 4 d d 7.28z z 10 33m CudCu dS 4 4 S ddCu
S
Cu77 .28SS10 10 mm d554 4 zCu .28
zzCz C S 10 S Cu 10 C zS Cu 410 35 3 d45 4 2 4 Thus 2.cup 7 10diameter, m ACu AS z S z Cuz S d Cu zSS 4 z Cu 3 z A z d 4 4 d d 5 S S 7.28 zC 10 Cu S zCuS z 4 zCuS 10 m ACu d Cu AACu z S CVolume d10 zS Cu z d z S S M Cu 4 Cu Cz For the next part of Dam ACu Sprue: zS S Area d Cu z z , hence d S Consider the dam asAaS cup. 4 Cu CuTherefore, −3 z S Volume ACuGate S × 10 m Height +d CuDamzHeight SprueM Height = Sprue c, = 1.56 Area A CuCu z S S
dddS 3 zzCu A z z , hence AAS z S zzCu 35 × 10−3 m d z z S Cu S AACu z d z C Cu Cu Cu SS Cu SS d z AS z Cu , hence S 4 Cu −3 .2 Mc. ThusThus Mr cup =1.87 × 10 m ACud 4 zzzSS S 2 44 435 z S33m 35dCu2.7 10 35 diameter, dddCu 10 3mm SS S4 4 22 22.7.710 Cudd Cu zzCz C 10 Volume 10 10 C MC 35 Area z S 3 4 d Cu d S Riser design: dr 2d4r 10 ds 2.7dr10 m Volume of−3Riser z C Volume M , = 1.56 × 10 m M r c Modulus the casting, M C = 4 d d Heatofdissipatin g−3Area 4 s Area r Volume Volume −3 Here Mc, = 1.56 × 10 m M Volume MCCCM M = 1.2 M r c. Thus Mr =1.87 × 10 m dr dr ds dr Area Area M . Thus M =1.87 × 10 −3 m Let, Modulus of riser, Mr = 1.2 Area c r Volume 4 d r d s Assume 4 cylindrical riser, −3 −3mM C −3 × 10 MMcc,c,==1.56 1.56 × 10 m Area S Cu Cu Cu hence hence 44 4r =1.87 c. Thus d Cu d S M S S4 r 2Cu ,4 ,M 2.7 S10 m = 1.2 M Aspiration correction, d z A z z , hence 10
riser height = riser diameter = dr, Mr
−3 rr r==1.2 1.2MMcc.c.Thus ThusMMrr r=1.87 =1.87××10 10−3−3mm × 10−3MM m MVolume c, = 1.56 d d d d of Riser
Heat dissipating Area
r
r
s
r
4 Mr =1.87 × 10−3 m 1.2 d r M d sc. Thus Mr4=
1672-6421. [2] BARUN KUMAR DAS; MILAN MUKHERJEE; PRADIP KUMAR SAHA; PRASANTA K. DATTA: Gating System in Thin Walled Copper Alloy Casting, International Conference on Mechanical, Industrial and Energy Engineering 2014, Khulna Bangladesh. [3] BARUN KUMAR DAS; MILAN MUKHERJEE; PRADIP KUMAR SAHA; PRASANTA K. DATTA: Liquid Metal Flow In Traditional Casting of Eastern India, Proceedings of the 7th IMEC & 16th Annual Paper Meet, January, 2015. [4] BARUN KUMAR DAS; PRANAB K CHATTOPADHYAY; PRASANTA K. DATTA: Foundry Principle of Ancient Indian Metal Casting Through Modern Engineering, ASTRA 16, Pune, 9 – 11 January 2016. [5] SOUMYAJIT ROY; BARUN KUMAR DAS; PRASANTA KUMAR DATTA: Application of Fluid Flow Mechanics in Gating Calculation of Investment Casting Production. International Journal of Mechanical and Production Engineering (IJMPE), 2016, 4(5), 73–79. ISSN 2320-2092 (print), ISSN 2321-2071 (online). [6] White, F. M.: Fluid Mechanics. New Delhi: WCB McGrawHill Publication, 1998, p. 185. [7] GEIGER, G. H.; POIRIER, D. R.: Transport Phenomena In Metallurgy. Sydney: Addison-Wesley Publishing Company, Menlo park, 973, p. 124. [8] HAALAND, H. T.: Flow and Heat Transfer in a Radially Spreading Liquid Metal Jet Related to Casting of Ferroalloys, Dr. ing. Thesis, Department of Materials Technology and Electrochemistry Norwegian University of Science and Technology, 2000, p. 88. [9] NAG, P. K.: Engineering Thermodynamics. New Delhi: Tata McGraw Hill Pvt. Ltd., 2009, p. 29. [10] STEFANESCU, D. M.: Science and Engineering of Casting Solidification. New York: Springer, 2002, p. 65. ISBN 978-0-387-74612-8. [11] BANSAL, R. K.: Fluid Mechanics and Hydraulic Machines. New Delhi: Laxmi Publication, 2010, p. 165. [12] ASM Handbook, Volume 15: Casting. ASM International, 1998, pp 1286, 1287. [13] ASM Handbook, Volume 15: Casting. ASM International, 1998, pp 1246, 1289. [14] http://www.engineeringtoolbox.com/dry-air-properties-d_973.html [15] https://en.wikipedia.org/wiki/Kerosene [16] http://www.insula.com.au/physics/1279/L8.html [17] http://www.etc-cte.ec.gc.ca/databases/Oilproperties/pdf/ WEB_Fuel_Oil_No._1_(Kerosene).pdf
Hence dr = 7.48 × 10 -3, m < Dam diameter (10 × 10 −3 m) In the investment casting, risers are not used by artisans. Riser Volume Volumeof Riser dddrr rdddrr rdddss s dddrr r Volume ofofRiser Riser M Mrr rsprue M regular practice. Gating design was and are combined in Heat 444 Heatdissipatin dissipatingggArea Area 444dddrr rdddss s Heat dissipatin Area found toVolume be satisfactory. dr dr ds dr of Riser M r of all items: Volume Heat dissipating Area 4 d r d s 4 −6 3 Volume of the casting, = 12.7 × 10 m ; Volume of the Dam Sprue = 3.2 × 10 −6 m3 Hot metal required: Considering 20% extra metal for Drossing & Spilling, the metal required. Therefore, Hot metal required: w = 1.2 × (Casting vol. + Dam sprue vol.) × Density of metal × 10 −3, kg = (12.7+3.2) ×10 −6 × 8400 ×1.2 = 160×10 −3 kg Yield of casting: 119 Casting Weight 100% 74.37% Peer-reviewers: Recenzenti Yield of casting 100% Yield of casting 160 Weight of total metal prof. Ing. Milan Horáček, CSc. Casting 119 Weight 100% Yield of casting 119 100% 74.37% prof. Ing. Augustin Sládek, PhD. t Yieldofofcasting casting 100% 74.37% 100% Yield 160 Weight 160of total metal metal
Casting 119 119 CastingWeight Weight 100% Yield of casting 119 Casting Weight Yield Yieldofof casting casting 100% 100%74.37% 74.37% 100% 74.37% Yieldof casting 100% Yield Yield ofof casting casting 100% 160 Weight of total 160 160 Weightofoftotal totalmetal metal Weight metal 154 S l é vá re nsCasting t v í . LWeight X V . k v ě te n – č e r v e n 2017 . 5 – 6119 100% 74.37% Yield of casting 100% Yield of casting 160 Weight of total metal