P
r2 20.0005 72.86 10 cos cos(25) 264 N / m 2 r 0.0005
Kinetics of liquid metal flow in gating design of investment casting production Roy – 2U. K.264 Maity – A. K. Pramanick – P. K. Datta P 0S. 2 .5 0.5
v f [v g
annular horizontal tube at room temperature r 0also .0005 vindicated the proposed mathematical model for fluid flow. (iii) In case of actual brass (60/40) castings in the hot clay molds P close to experimental 264 0.5 designed filling times were found 2tobe v f [vg ]0.5 [0.6262 ] 0.8m / s liq design in clay 1000molded ones. Hence, optimization of gating investment casting production could be guided from this vf kinetics of liquid flow modeling quality metal and C D to achieve 1.27 v1 good surface quality in casting production.
Qi Ag v g 0.0012 0.626 1.96 10 6 m3 / s
Nomenclature
Q f C D Ag v g 1.27 1.96 10 6 2.48 10 6 m3 / s
Symbol Meaning
Unit V 1.143 10 5 tf m 4.6 sec Q f 2.48 10 6 m/s
Velocity of fluid
P
Pressure at a point
N/m2
V
Volume
m3
m
Mass
kg
D
Diameter of gate or channel
m
Z α
Height
m
γ
Surface tension of liquid metal
N/m
µ
Viscosity of liquid
mPa · s
Re ρ
Reynold’s No Density of fluid
kg/m3
θ
Angle of liquid metal droplet
° (degree)
T
Temperature
K
RU
Universal gas constant
kJ · kg−1 · K−1
RC
Characteristics gas constant
kJ · kg−1 · K−1
A
Area of cross-section
m2
Energy correction factor
CD
Co-efficient of discharge Liquid metal pouring rate
m3/s
tf
Time of filling
s
vg
Velocity of fluid at gate
m/s
vf
Final velocity
m/s
Vm
Volume of casting
m3
Ag
Gate area
tf
4.6 sec0.0005 r 6 5 QVfm 21.48 1010 .143 P 264 0.5 tTherefore 2 06.5 4.6 sec is:2 final vf f Q[fvg 2.48 [0.626 ] 0.8m / s 10]velocity
∆Pliq − 2641000 2 v f = [vg − γ ]0.5 = [0.626 2 − ]0.5 = 0.8m / s P 264 0.5 2 ρ 0.5 2 1000 liq v f [v g ] 0.8m / s ] [0.626 1000 v f liq
CD
1.27 v1 v f v 0.0012 0.626 1.96 10 6 m 3 / s Qi A g g 1.27 C D v1 Q C A v 1.27 1.96 10 6 2.48 10 6 m 3 / s Qi f Ag vDg g g 0.0012 0.626 1.96 10 6 m3 / s Vm
1.143 10 5
t f C 4.6 sec6 2.48 10 6 m 3 / s Q 110 .27 6 1.96 10 f Q D Ag 2v.g48 f
v
Q
PŘESNÉ LITÍ
] [0.626 ] 0.8m / s 1000 264 0.5 2 P v f [vg liq ]0.5 [0.6262 ] 0.8m / s 1000 Appendixliq A (i) Gating design calculations can be improved in Bernoulli’s vg gzs 9.81 0.04 vf Calculation of experiment using water equation by considering (i) the kinetic energy correction factor C D 1.27 Velocity (α), (ii) pressure difference factor and (iii) surface tension factor vv f entered into the cavity (at gate): vg gzs 9.81 0.04 0.62 C D 1 1.27 in the mold system. The pressure drop due to surface tension vgi Agvgz 812 0.004 0.1626 / s63m3 / s Q v1g s 90.001 .626 .96 m 10 2 2 72 . 86 10 of liquid and gas pressure difference at high temperature 6 25 3 ) 264 N / m 2 P Av cos 2 0.626 1.96 10 cos( Q 0.001 3m / s Q if C Dgof Aggrvresistance 1006.0005 2.surface 48 10 6 mtension: /s Effect due to provided better results in filling time for hot investment mold. g 1.27 1.96 6 3 6 3 (ii) Simulation experiments done 2by water2 and kerosene in g v g 15.2721.72 10 Q f C D2A 96.86 10 cos( 2.4825 10 72.86 10 3 cos ) m 264/Ns / m 2 10 P cos cos(25) 264 N/Pm 2Vm 1.143
V 1.143 10 5 tf m 4.6 sec Q f 2.48 10 6
Appendix B Calculation of gating design for wax pattern Details of casting as received (Fig. 6) Volume of the casting, × 10 6, m3 = 0.127; Heat dissipating area of the casting, × 103, m2 = 8.125 Weight of the casting, × 103, kg = 119 Gating design: Assumptions: Top gating Dimension of cup, sprue and gate are given in Fig. 6. For Brass: Viscosity, m · Pa · s = 4 and Liquid Density, kg/m3 = = 8400 Sprue area, × 10 6, m2 = 3.14 Effect of gas pressure: At ofair as ideal gas): P1 300 P atmKtemperature, RT 1.177 287pressure 300 1.01 105isN(considered / m2 P1 P atm RT 1.177 287 300 1.01105 N / m2 Let, pressure inside mold at 1250 is P2 0.2824 1250 T P P ρ2 T2 P 0.2824 × 1250 0.9997 P1 P22 = P11 1T221T22 = 1P11.0177 300 .2824 1250 = 0.9997 P1 P2 P1 ρ1T1 P1 1.177 × 300 0.9997 P1 1.177 300 1T1 Pgas P1 P2 30.3N / m2 Ppressure P2positive 30.3Nhere, / m2 i.e. accelerating the flow. gas P1 is 2 Gas
m2 300 1.01105 N / m P1 P atm RT 1.177 287 Velocity Heat dissipating area of casting m2
Am
P
30.3
gas 0.m 2824 v1 gz1 9.81 0.P045 2T2 0.67 / s 1250 0.9997 P Data used 2 P1 8400 P1 1 liq 1.177 300 T
1 1
Properties
Value (unit)
Density (ρ) of air (at 300 K) [14]
Pgas P1 P2 30.3N / m
2
1.177 (kg/m3)
A1v1[14] 2.52 0.67 3 A1vof A2(at v2 1250 Density (ρ) 0.2824 kg/m 1 air 0.167 m / s) v2 K) 2 A 5 −1 Characteristic gas constant 2for air (R) 287 (kJ · kg · K−1)
Density (ρ) of water (at 300 K)
1000 (kg/m3)
Density (ρ) of kerosene (at 300 K) [15]
810 (kg/m3)
Surface energy (γ) of kerosene [17]
30 (mN/m)
3 4 2 0.167 A2(at ' v21250 Density (ρ) 8400 0.67 m / s(kg/m ) v g ofvbrass K) [4] 2 3 A 2 Surface energy (γ) of 3water [16] 72.86 (mN/m)
Surface energy (γ) of liquid brass [4] Viscosity of liquid brass (µ) Contact angle (θ) of water [16]
2000 (mN/m)
v'2vgm · Pa · s 100 % 24 % v25° '
Contact angle (θ) of kerosene [16]
26°
Contact angle (θ) of liquid brass [4]
136°
2 2 0.2 cos cos(136) 288N / m2 r 0.001
P
2
v f [v g CD
vf v1
P
liq
0.95
]0.5 [0.67 2
288 0.5 ] 0.64m / s 8400
at section -0: v0 = 0 (consider constant head) Velocity at -1: Pgassection 30.330.3 Pgas P atm 300 0m.67 1/ .sm 01/ s105 N / m2 vP 9.181.9177 .81 0.045 30. gz1 PgasRT 0.287 045 11v1 gz 1 3 0.67 liq 9.81 0.045 84008400 v1 gz1 liqPgas 30.30.67m / s v1 gz1 liq 9.81 0.0458400 0.67m / s
liq 1.177 287 300 8400 P1 P atm RT 1.01105 N / m2
0.2824 12502 Continuity Equation: Velocityat -2: Apply 2T2section 9997 P1 A11v1A1v1 2.522 .50.6700.. 67 1 vA v P AP1v2 1A1vP A 22T m/m s /s v 0.167 1 . 177 1 2 2 v 0.167 2 .52 52 02.67 2 A1v1 A2 v21 v12 2AA1v2 1 A2 2300 5 0.167m / s 2 25.5 0.67 A1v1 1250 0A.2824 2Tv2 AP1v1 A P1 2 2 v2P1 2 0.9997 P 0.167m / s 2Pgas 30.3N / m22 1 T1 P1 P 12.A 177 1 2 300 5 Velocity at section-3 is known as gate velocity: v3 = vg 2 4 2.4302N.167 Pgas A2P'1vA /0m v2230 .167 22 ' P 2 s /s v g v gv3v3A' v 4 02.167 0.670m .67/ m 2 2 2 0.67m / s v g v3 2A3 2A AA23 ' v23 422 2 0.167
0.67 m / s sprue height, without v g v3 of liquid metal at2 gatefor Velocity same 2 A3 v' v' 9.819 .8 dam: v' 9.81 0.080 0.88m / s v' 9.81 v'vvg'v
v'
g % %24 % Velocity decrease using dam: 100 24 % v'vg 100
v' v' 100 % 24 % v' v'vg
Effect of pressure drop due to surface tension: 100 % 24 % v'
2γ 2 × 0.2 ∆Pγ = − 2 cos θ = − 2 0.2cos(136) = 288 N / m 2 2 0.001 2 0cos( .2 136) 288N / m2 P r cos
cos 2 0.2 cos(136) 288N 2/ m2 P 2 P r cos cos(136) 288N / m r 0.001 0.001 r 0.001
P
2 2 0.2 cos cos(136) 288N / m2 r 0.001
P .5 288288 2 2 0.5 2 0P v f v [f vg 2[vg 2288 P ]0.5 ]0.[50.67 [02.67 ]0.5 ]0.50.640m .64/ sm / s 8400 v f [vg liq ] liq [0.67 8400 ] 0.64m / s S l évá re ns t v í . L X V . k v ě te n – č e r v e n 2017 . 5 – 6 8400 v f v liqP C D[vvf 2 f 0.950.95]0.5 [0.67 2 288 ]0.5 0.64m / s C vCfD vg D 1 v10.95 liq 8400 v1
153