
3 minute read
International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Advertisement
Volume 11 Issue IV Apr 2023- Available at www.ijraset.com
DOI: 10.1109/TIP.2020.3043387
[67] Zheng, X., Lei, Q., Yao, R., Gong, Y., Yin, Q.: Image segmentation based on adaptive K-means algorithm. EURASIP Journal on Image and Video Processing, 2018(1), 1-10 (2018). https://doi.org/10.1186/s13640-018-0309-3
[68] Attard, L., Debono, C.J., Valentino, G., Castro, M.D.: Tunnel inspection using photogrammetric techniques and image processing: A review. ISPRS journal of photogrammetry and remote sensing, 144, 180-188 (2018). https://doi.org/10.1016/j.isprsjprs.2018.07.010
[69] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition, 107, 107269 (2020). https://doi.org/10.1016/j.patcog.2020.107269
[70] Liu, P., El Basha, M.D., Li, Y., Xiao, Y., Sanelli, P.C., Fang, R.: Deep evolutionary networks with expedited genetic algorithms for medical image denoising. Medical image analysis, 54, 306-315 (2019). https://doi.org/10.1016/j.media.2019.03.004
[71] Ibtehaz, N., Rahman, M.S.: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121, 74-87 (2020). https://doi.org/10.1016/j.neunet.2019.08.025
[72] Richler, J.J., Wilmer, J.B., Gauthier, I.: General object recognition is specific: Evidence from novel and familiar objects. Cognition, 166, 42-55 (2017). https://doi.org/10.1016/j.cognition.2017.05.019
[73] Pathak, A.R., Pandey, M., Rautaray, S.: Application of deep learning for object detection. Procedia computer science, 132, 1706-1717 (2018). https://doi.org/10.1016/j.procs.2018.05.144
[74] Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer visionbased data-driven pavement distress detection. Construction and building materials, 157, 322-330 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.110
[75] Suin, M., Purohit, K., Rajagopalan, A.N.: Degradation aware approach to image restoration using knowledge distillation. IEEE Journal of Selected Topics in Signal Processing, 15(2), 162-173 (2020). DOI: 10.1109/JSTSP.2020.3043622
[76] Lempitsky, V., Vedaldi, A., Ulyanov, D.: Deep image prior. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE (2018). DOI: 10.1109/CVPR.2018.00984
[77] Wang, N., Zheng, H., Zheng, B.: Underwater image restoration via maximum attenuation identification. IEEE Access, 5, 18941-18952 (2017). DOI: 10.1109/ACCESS.2017.2753796
[78] Rossiter, D.G.: Past, present & future of information technology in pedometrics. Geoderma, 324, 131-137 (2018). https://doi.org/10.1016/j.geoderma.2018.03.009
[79] Kapoor, R., Gupta, R., Son, L.H., Kumar, R., Jha, S.: Fog removal in images using improved dark channel prior and contrast limited adaptive histogram equalization. Multimedia Tools and Applications, 78(16), 23281-23307 (2019). https://doi.org/10.1007/s11042-019-7574-8
[80] Liu, Y., Chen, X., Wang, Z, Wang, Z.J., Ward, R.K., Wang, X.: Deep learning for pixel-level image fusion: Recent advances and future prospects. Information Fusion, 42, 158-173 (2018). https://doi.org/10.1016/j.inffus.2017.10.007
[81] Zha, Z., Yuan, X., Wen, B., Zhou, J., Zhu, C.: Group sparsity residual constraint with non-local priors for image restoration. IEEE Transactions on Image Processing, 29, 8960-8975 (2020). DOI: 10.1109/TIP.2020.3021291
[82] Zha, Z., Yuan, X., Wen, B., Zhou, J., Zhu, C.: Group sparsity residual constraint with non-local priors for image restoration. IEEE Transactions on Image Processing, 29, 8960-8975 (2020). DOI: 10.1109/TIP.2020.3021291
[83] Shi, Z., Guo, B., Zhao, M., Zhang, C.: Nighttime low illumination image enhancement with single image using bright/dark channel prior. EURASIP Journal on Image and Video Processing, 2018(1), 1-15 (2018). https://doi.org/10.1186/s13640-018-0251-4
[84] Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90 (2018). https://doi.org/10.1016/j.compag.2018.02.016
[85] Murtaza, G., Shuib, L., Abdul Wahab, A.W., Mujtaba, G., Nweke, H.F., Al-garadi, M.A., Zulfiqar, F., Raza, G., Azmi, N.A.: Deep learningbased breast cancer classification through medical imaging modalities: state of the art and research challenges. Artificial Intelligence Review, 53(3), 1655-1720 (2020). https://doi.org/10.1007/s10462-019-09716-5
[86] Tsukada, M., Kondo, M., Matsutani, H.: A neural network-based on-device learning anomaly detector for edge devices. IEEE Transactions on Computers, 69(7), 1027-1044 (2020). DOI: 10.1109/TC.2020.2973631
[87] Gush, T., Bukhari, S.B.A., Haider, R., Admasie, S., Oh, Y.S., Cho, G.J., Kim, C.H.: Fault detection and location in a microgrid using mathematical morphology and recursive least square methods. International Journal of Electrical Power & Energy Systems, 102, 324-331 (2018). https://doi.org/10.1016/j.ijepes.2018.04.009
[88] Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN classification with different numbers of nearest neighbors. IEEE transactions on neural networks and learning systems, 29(5), 1774-1785 (2017). DOI: 10.1109/TNNLS.2017.2673241
[89] Zheng, X., Wang, Y., Wang, G., Liu, J.: Fast and robust segmentation of white blood cell images by self-supervised learning. Micron, 107, 55-71 (2018). https://doi.org/10.1016/j.micron.2018.01.010
[90] Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y.: A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277-293 (2017). https://doi.org/10.1016/j.isprsjprs.2017.06.001
[91] Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: A deep active learning framework for biomedical image segmentation. International conference on medical image computing and computer-assisted intervention, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46
[92] Jimenez, F.P., Miyatake, M.N., Medina, K.T., Perez, G.S., Meana, H.P.: An inverse halftoning algorithms based on neural networks and atomic functions. IEEE Latin America Transactions, 15(3), 488-495 (2017). DOI: 10.1109/TLA.2017.7867599
[93] Halim, A., Wiryawan, B., Loneragan, N.R., Hordyk, A., Sondita, M.F.A., White, A.T., Koeshendrajana, S., Ruchimat, T., Pomeroy, R.S., Yuni, C.: Developing a functional definition of small-scale fisheries in support of marine capture fisheries management in Indonesia. Marine Policy, 100, 238-248 (2019). https://doi.org/10.1016/j.marpol.2018.11.044
[94] Mata, W., Chanmalee, T., Punyasuk, N., Thitamadee, S.: Simple PCR-RFLP detection method for genus-and species-authentication of four types of tuna used in canned tuna industry. Food Control, 108, 106842 (2020). https://doi.org/10.1016/j.foodcont.2019.106842