
3 minute read
International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Advertisement
Volume 11 Issue IV Apr 2023- Available at www.ijraset.com
[11] Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 108, 107561 (2020). https://doi.org/10.1016/j.patcog.2020.107561
[12] Bhattacharya, S., Maddikunta, P.K.R., Pham, Q.V., Gadekallu, T.R., Krishnan, S.R., Chowdhary, C.L., Alazab, M., Piran, M.J.: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustainable cities and society, 65, 102589 (2021). https://doi.org/10.1016/j.scs.2020.102589
[13] Dymkova, S.S.: Conjunction and synchronization methods of earth satellite images with local cartographic data. 2020 Systems of Signals Generating and Processing in the Field of on Board Communications, IEEE (2020). DOI: 10.1109/IEEECONF48371.2020.9078561
[14] Bouwmans, T., Javed, S., Zhang, H., Lin, Z., Otazo, R.: On the applications of robust PCA in image and video processing. Proceedings of the IEEE, 106(8), 1427-1457 (2018). DOI: 10.1109/JPROC.2018.2853589
[15] Udendhran, R., Balamurugan, M., Suresh, A., Varatharajan, R.: Enhancing image processing architecture using deep learning for embedded vision systems. Microprocessors and Microsystems, 76, 103094 (2020). https://doi.org/10.1016/j.micpro.2020.103094
[16] Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps, 323-350 (2018). https://doi.org/10.1007/978-3-319-65981-7_12
[17] Wang, G., Ye, J.C., Mueller, K., Fessler, J.A.: Image reconstruction is a new frontier of machine learning. IEEE transactions on medical imaging, 37(6), 1289-1296 (2018). DOI: 10.1109/TMI.2018.2833635
[18] Xiong, Z., Sun, X., Wu, F.: Robust web image/video super-resolution. IEEE transactions on image processing, 19(8), 2017-2028 (2010). DOI: 10.1109/TIP.2010.2045707
[19] Gershenson, C.: Facing complexity: Prediction vs. adaptation. Complexity Perspectives on Language, Communication and Society, pp. 3-14. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32817-6_2
[20] Gomes, S.L., Rebouças, E.S., Neto, E.C., Papa, J.P., de Albuquerque, V.H.C., Filho, P.P.R., Tavares, J.M.R.S.: Embedded real-time speed limit sign recognition using image processing and machine learning techniques. Neural Computing and Applications, 28(1), 573-584 (2017). https://doi.org/10.1007/s00521-016-2388-3
[21] Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng, S.: A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016(1), 1-16 (2016). https://doi.org/10.1186/s13634-016-0355-x
[22] Zhang, X., Ye, K.: Saliency area detection algorithm of electronic information and image processing based on multi-sensor data fusion. EURASIP Journal on Advances in Signal Processing, 2021(1), 1-16 (2021). https://doi.org/10.1186/s13634-021-00805-8
[23] Sharma, P., Hans, P., Gupta, S.C.: Classification of plant leaf diseases using machine learning and image preprocessing techniques. 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), IEEE (2020). DOI: 10.1109/Confluence47617.2020.9057889
[24] Heidari, M., Mirniaharikandehei, S., Khuzani, A.Z., Danala, G., Qiu, Y., Zheng, B.: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. International journal of medical informatics, 144, 104284 (2020). https://doi.org/10.1016/j.ijmedinf.2020.104284
[25] Lu, H.C., Loh, E.W., Huang, S.C.: The Classification of Mammogram Using Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer Detection. 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), IEEE (2019). DOI: 10.1109/ICAIBD.2019.8837000
[26] Tang, Z., Zhu, R., Hu, R., Chen, Y., Wu, E.Q., Wang, H., He, J., Huang, Q., Chang, S.: A multilayer neural network merging image preprocessing and pattern recognition by integrating diffusion and drift memristors IEEE Transactions on Cognitive and Developmental Systems, 13(3), 645-656 (2020). DOI: 10.1109/TCDS.2020.3003377
[27] Andriole, K.P.: Image acquisition. PACS, Springer, New York, NY (2006). https://doi.org/10.1007/0-387-31070-3_11
[28] Ahmad, J., Warren, A.: Fpga based deterministic latency image acquisition and processing system for automated driving systems. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE (2018). DOI: 10.1109/ISCAS.2018.8351472
[29] Meinen, B.U., Robinson, D.T.: Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment, 239, 111666 (2020). https://doi.org/10.1016/j.rse.2020.111666
[30] Leonard, S.M., Xin, H., Brown-Brandl, T.M., Ramirez, B.C.: Development and application of an image acquisition system for characterizing sow behaviors in farrowing stalls. Computers and Electronics in Agriculture, 163, 104866 (2019). https://doi.org/10.1016/j.compag.2019.104866
[31] Liu, X., Deng, Z., Yang, Y.: Recent progress in semantic image segmentation. Artificial Intelligence Review, 52(2), 1089-1106 (2019). https://doi.org/10.1007/s10462-018-9641-3
[32] Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 fourth international conference on 3D vision (3DV), IEEE (2016). DOI: 10.1109/3DV.2016.79
[33] Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 3-11. Springer, Cham (2018). https://doi.org/10.1007/978-3030-00889-5_1
[34] Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: DRINet for medical image segmentation. IEEE transactions on medical imaging, 37(11), 2453-2462 (2018). DOI: 10.1109/TMI.2018.2835303
[35] Maulik, U.: Medical image segmentation using genetic algorithms. IEEE Transactions on information technology in biomedicine, 13(2), 166-173 (2009). DOI: 10.1109/TITB.2008.2007301
[36] Chen, Y., Kuo, C.C.J.: Pixelhop: A successive subspace learning (ssl) method for object recognition. Journal of Visual Communication and Image Representation, 70, 102749 (2020). https://doi.org/10.1016/j.jvcir.2019.102749
[37] Jiang, X., Pang, Y., Li, X., Pan, J., Xie, Y.: Deep neural networks with elastic rectified linear units for object recognition. Neurocomputing, 275, 1132-1139 (2018). https://doi.org/10.1016/j.neucom.2017.09.056
[38] Bapu, J.J., Florinabel, D.J., Robinson, Y.H., Julie, E.G., Kumar, R., Ngoc, V.T.N., Son, L.H., Tuan, T.M., Giap, C.N.: Adaptive convolutional neural network using N-gram for spatial object recognition Earth Science Informatics, 12(4), 525-540 (2019). https://doi.org/10.1007/s12145-
019-00396-x