Lab Report Experiment 2

Page 1

Lab Report Experiment 2

S. Hessam Moosavi Mehr 84109275

1 Introduction The electric field field, E, for a planewave propagating in direction k can be represented as follows E = E0 exp(− jk · r). (1) The situation is identical in a waveguide or coaxial line, except that E0 itself is a function of the transverse coordinates E 0 = E 0 ( t1 , t2 )

(2)

where t1 and t2 span the transverse plane. Boundary conditions require that a portion Γ of a TEM mode propagating in a medium of impedance z0 be reflected when it meets the boundaries of a medium of impedance z L where Γ=

z L − z0 . z L + z0

(3)

The total field is then the sum of the incident field, Ei , and the reflected field, Er , where Er = ΓE0 exp(+ jk · r). (4) Summing the two terms and dropping the vector notation for simplicity, E( x ) = E0 exp(− jkx ) + ΓE0 exp(+ jkx )

= E0 exp(− jkx ) [1 + Γ exp(+2jkx )]

(5) (6)

which gives | E( x )| as

| E( x )| = E0 |1 + Γ exp(+2jkx )| .

(7)

| E( x )| has a maximum Vmax = 1 + |Γ| where ]Γ + 2](kx ) = 2nπ and a minimum Vmin = 1 − |Γ| where ]Γ + 2](kx ) = (2n − 1)π.

1


2.0

1.5

1.0

0.5

d

2

4

6

8

Figure 1: The standing-wave pattern for 0 ≤ Γ ≤ 1 Nominal f 900 MHz 1000 MHz 1100 MHz 900 MHz

Minimum #1 258 mm 209 mm 138 mm 219 mm

Minimum #2 90 mm 55 mm 273 mm 96 mm

Loaded minimum 56 mm 72 mm 56 mm 137 mm

SWR 1.3 1.45 2.1 3.0

Table 1: Measurements This ultimately gives rise to the standing-wave ratio, or SWR, defined as S=

Vmax 1 + |Γ| = . Vmin 1 − |Γ|

(8)

This allows one to determine Γ using the SWR, Γ=±

S−1 S+1

where the sign is positive when z L ≥ z0 and negative otherwise.

2

(9)


f 892 MHz 974 MHz 1110 MHz 1220 MHz

λ 336 mm 308 mm 270 mm 246 mm

|Γ| 0.13 0.18 0.35 0.50

∆L −34 mm 17 mm −82 mm 41 mm

∆L/λ −0.10 0.055 −0.30 0.17

ζ L,min 0.77 0.69 0.48 0.33

Table 2: Calculations Γ=0.50 Γ=0.35 Γ=0.18 Γ=0.13

60

40

20

50

100

150

20

40

60

Figure 2: |z L | as a function of ]Γ for z0 = 50

2 Measurements and Calculations ∆L is taken to be positive if the loaded minimum is farther from the generator than the other two minima. λ = 2d c f = λ S−1 |Γ| = S+1

(10) (11) (12)

As figure 2 shows, |z L | is lowest when ]Γ is π, i.e., Γ = −|Γ|, in which

3


70

45

1.4

1.2

1.0

0.9

0.8

0.2

25 0.4

20

EN

75

T

0.4

(+ jX /

Z

0

N PO

EC O

NC

80

TA

TO

R

M

4 0.0

6 15 0

0.4

0.3

AC IV E

10

0.8

IN D

0.25 0.26 0.24 0.27 0.23 0.25 0.24 0.26 0.23 C 0.27 R E FL E C T IO N O E FFI C I E N T I N D E G REES L E OF ANG I SSI O N C O E F F I C I E N T I N T R A N SM DEGR L E OF EES ANG

UCT

85

1.0

RE

0.47 160

0.2

GEN

5.0

20

0.6

90

0.28

ARD

15

1.0

0.22

170

10 0.1

0.49

0.4

0.48

4.0

9

0.8

1

ERA

3.0

0.6

0.2

T OW

2

0.2

GT H S

8

0.3 50

30

20

0.2

WAV ELEN

0.1

30

2.0

0.0 6 0.4 4

0.4

5

14 0

C

3

0.2

0.0

PA

T

7

0.3

0.3

5

CA

R

EP

0.1 60

40

O

SC

)

1 0.3

),

I IT

SU VE

E

6

4

9 0.1

0.5

65

3 0.4 0 13

C AN

/ Y0 ( +jB

0.3

35 1.6

.07

0.1

70

40

1.8

0.6 60

0 12

0.15 0.35

80

0.7

2 0.4

55

1 0.4

8 0.0

0

110

0.36

90 50

0

0.14

0.37

0.38

0.39 100

0.4

0.13

0.12

0.11

0.1

.09

50

10

20

4.0

5.0

3.0

1.8

2.0

1.6

1.4

1.2

1.0

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

± 180

0.8

50

0.0

50

1.0

N TA EP ES

C US IV CT

DU

0

0.12

-110

0.37

0.38

0.11 -100

TA

N

0.6

AC

0.0 9

0.1

40

( -j

-70

T

6 0.0

EN

0.5

2.0 1.0 -90 0.13

RE

N

-65

1.8 1.6 0.36

5

0.14 -80 -4 0

0.9

1.2

1.4 0.15

0.35

0

-70

-4

4

-5

6

0.3

0.8

-35 0.1

0.7

-60

IV E

-60

7

-55

3

C IT

PO

-1

X/

0.1 0.3

CAP A

M

5 0.0

), Z0

OR

-75

IN

0.2

-30

2

CE CO

4 0.4

1

0.3

0.3

-85

( -jB CE

0.4

0.1 9

8 0.1 0 -5 -25

5 0.4

0.6

0

-4

0.3

-20

4 0.0 0 -15 -80

0.8 3.0

.46

4.0

0.47

1.0

-15

0.2 9

0.2

0.4

0.28

0.2 1 -30

0.3

0.22

E VEL WA -160

0.8

-20

0.2

5.0

N GT

/ Y0 )

-90

0.6

-10

HS T

0.4

0.1

10

0.48

D L OA D OW A R -170

0.2

20

0.49

RESISTANCE COMPONENT (R/Z0), OR CONDUCTANCE COMPONENT (G/Y0)

0.0 7 -1 30

3

0.4 -12 0

8

0.0

0.4

2

0.4 1

0.4

0.39

Figure 3: At 900 MHz: ζ L = 0.9 − 0.25j and z L = 50ζ L = 45 − 12.5j case z L − z0 = | Γ | e j]Γ z L + z0 z0 − z L,min = |Γ| z0 + z L,min ) ( 1 − |Γ| z L,min = z0 1 + |Γ| 1 − |Γ| ζ L,min = 1 + |Γ|

(13) (14) (15) (16)

Table 2 shows the resulting normalized impedances. Figures 3–6 show the corresponding smith charts and their respective normalized and actual impedances. The load assembly is supposed to produce a matched load ( λ4 antenna) at 1000 MHz. The experiment shows a small deviation of about ]ζ L = 14◦ .

4


0.4

0.12

0.13

5

-5

-4

0.41

0.1

-90

0.39

0.38

0.37

0.36

0.11 -100

0.34

0.15

0.14 -80

0.35

0.9

1.2

1.0

0

8

0.0 7

0.6

0.4 3

-60

0.7

1.4

0.8

-55

0.09

-110

0

-70

-4

2

0.4

-35

0.3

3

0.16

0.0

-12 0

1.6

30

-65

-1

A

RE

1.8

0.2

VE

ITI

AC

CAP

-60

0.5

4

0.4

2.0

1

0.3

-30

0

.06

-70

-1

40

X

( -j

T

EN

N

PO

9

7 0.1

NC

EC O

M

0.1

CT A

), 0 /Z

0

.05

OR

IN

-75

-1

C DU

9

0

-4

0.4

TI

SU VE

-80

S

P CE

N

1.0

TA

( -jB CE

/ Y0 )

IV E

1.0

RE

AC TA NC EC OM

80

PO

4

N EN

T

75

(+ jX /

5

0.4 14 0

5

0.0

Z

70

0.4 4

0.5

0.0 6

25

0.4

0.6

0.8 20

4.0

50

UCT

6 15 0

0.4

0.0

65

2.0

1.8

1.6

55

1.2

1.0

0.9

0.8

1.4

0.7

0.6 60

0.1

20

10

5.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

IN D

85

R

45

50

5

-4

0.9

1.2

1.0

0

-5

1.4

0.8

-55

8

0.6

0.4 3 -60

0.7

0.0 7

1.6

-65

1.8

0.5

4 0.4

2.0

0

.06 -70

-1

40

0

X

.05

), 0 /Z

0

.45

OR

IN

-75

-1

0 50

TI

-80

SU VE

.04

C DU

0

.46

20

10

S

P CE

N

/ Y0 )

0.49 D R D L OA T OW A -170

-90

TH S

0.48

EN G

( -jB CE

-85

VEL -160

1.0

TA

WA

0.47

0.4

0.6

0.2

0.4

0.6

0.2

0.6

TO

0.3

0.3

-20 3.0

-85

0.6

ERA

50

0.2

0

1.0

50

0.8

4.0

0.1 0.4

90

0.8

0.47

0.3

0

5.0

0.4

160

0.0

0.0

50

20

10

5.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

± 180

0.49

GT H S

170

WAV ELEN

UCT

ARD

IN D

90

0.48

T OW

85

160

GEN

IV E

ERA

1.0

RE

AC

0.47

5.0

1.0

5.0

0.28

.45

0.8

-10

0.41 0.1

GEN

0.6

ARD

0.8

0.48

10

T OW

20

GT H S

1.0

-90

RESISTANCE COMPONENT (R/Z0), OR CONDUCTANCE COMPONENT (G/Y0)

50

0.4

0.12 0.13

0.39

0.38 0.37 0.36

0.11 -100

-90 0.15

0.1 0.4

170

0.2

0.22

.04

-20

0

0.49

0.6

0.2

0.2

WAV ELEN

TA

TO

NC

4

PO

0.0 6 15 0

0.4

EC OM

80

R

0.3

0.0

RESISTANCE COMPONENT (R/Z0), OR CONDUCTANCE COMPONENT (G/Y0)

10

20

50

0.25 0.26 0.24 0.27 0.25 0.24 0.26 0.23 C 0.27 R E FL E C T IO N O E FFI C I E N T I N D E G REES L E OF ANG I SSI O N C O E F F I C I E N T I N T R A N SM DEGR L E OF EES ANG 0.23

0.0

0.8

0.2 20

0.2 1 -30

2

-70

0.16

0.14 -80

0.35

0.09 -110

0 -4

0.34

2 0.4 0.3

30

-1

RE

0.2

-12 0 -60

VE

ITI AC

CAP -30

( -j T EN N

PO

M

CO CE AN

AC T

0.0

-35 3

0.2

0.28

± 180

1.0

0.22

0.49

0.8

9

D R D L OA T OW A -170

4.0

1

TH S

N

EN

T

75

5

14 0

0.0 5

(+ jX /

0.4

20

0.2

0.48

0.8

0.2

30

EN G

30

0.3

60

8 0.1 0 -5 -25

35 7 0.1

70

2

)

0.3

0.35

0.3

VEL -160

9

40

0.2

WA

0.6

0.2

0

40

0.47

Z

70

0.4

0.28

1

5 0.36

0.3

.46

0

0.22

80

9 0.1

0.1 -20

0.13

0.4

4

0.5

6

0.0

65

2.0

1.8

1.6

55

1.2

1.0

0.9

0.8

1.4

0.7

0.6 60

0.1

10

20

50

0.25 0.26 0.24 0.27 0.25 0.24 0.26 0.23 C 0.27 R E FL E C T IO N O E FFI C I E N T I N D E G REES L E OF ANG I SSI O N C O E F F I C I E N T I N T R A N SM DEGR L E OF EES ANG

0.23

0.4

0.4

0.2 20

0.37

0.3

0.28

P CE

90

50

-15

25

0.22

VE

CE

N TA

0.2

9

0 0.38

30

1

C

I IT

S SU 110

0.12

60

0.3 1

7 / Y0 ( +jB

)

9

0.1

R

0.41 0.39 100

-4 0

0.11

35

0.3

0.4 O

PA 0 0.4

45

50

70

0.2

0.1

0.2 1 -30

0.09

0.35

0.2

0.1

40

0.2

30

),

CA 12

E

0.36

0.3

.08

SC

/ Y0

80

0.2

0.3

3 0.4 0 13 2

U ES jB E (+

40

0.4

1

0.0

R

IV

NC 0.13

0.3

0.2

0.4

O

PA

T CI

A PT

0.37

9

0.3

),

CA

1

90

8 0.1 0 -5 -25

7 0.38

0.1

0.2

3 0.4 0 13

20 0.12

-20 3.0

0.0 0.41

0.39 100

4.0

0.11

-15

2 0.4

0.4

5.0

8 0.0 110

-10

0.1

50

0.09 0.14

0.15

0.34

0.16

0.3 3

0.1 7

2

8

3.0

15

10

Figure 4: At 1000 MHz: ζ L = 0.74 + 0.18j and z L = 50ζ L = 37 + 9.0j

0.14

0.15

0.34 0.16

0.3 3 0.1 7

2 8

3.0

15

10

Figure 5: At 1100 MHz: ζ L = 1.6 + 0.75j and z L = 50ζ L = 80 + 37.5j


70

45

1.2

1.0

50 0.9

0.8

1.6

25 0.4

20

EN

75

T

0.4

(+ jX /

Z

0

N PO

4 0.0

EC OM

6 15 0

NC

TA

AC

1.0

RE

0.47

IV E

UCT

85

160

0.2

GEN

5.0

20

10

0.8

IN D

0.25 0.26 0.24 0.27 0.25 0.24 0.26 0.23 C 0.27 R E FL E C T IO N O E FFI C I E N T I N D E G REES L E OF ANG I SSI O N C O E F F I C I E N T I N T R A N SM DEGR L E OF EES ANG

0.23

ARD

15

0.28

0.6

90

4.0 1.0

0.22

TO

R

80

0.4

0.3

0.8

9

ERA

3.0

0.6

1

170

10 0.1

0.49

0.4

0.48

8

2

0.2

T OW

0.1 0.3 50

2.0

65 0.5

0.0 6 0.4 4 0

0.2

0.2

GT H S

7

3

30

30

20

0.2

WAV ELEN

0.1 0.3

60

0.3

0.4

5

14

TA

)

0.2

0.0

PA

EP

/ Y0

40

5

CA

R

SC

( +jB

4

1 0.3

O

I

SU VE

E NC

6

0.3

35

9 0.1

),

T CI

55

0.6 60

1

7 0.0

0.1

70

40

1.8

20

0.35

80

1.4

2 0.4

0.15

0.36

90

0.7

8 0.0

3 0.4 0 13

110

1 0.4

0.14

0.37

0.38

0.39 100

0.4

0.13

0.12

0.11

0.1

9 0.0

50

10

20

4.0

5.0

3.0

1.8

2.0

1.6

1.4

1.0

1.2

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

± 180

0.8

50

0.0

50

CE AN PT

1.0

SU VE I

OR

2.0 0.12

0.37

0.38

0.7

N

5

-70

-1

40

0.0

6 0.0

0.0 8

-12 0

0.6

TA

30

-1

0.0 7

0.4 3

2

-110

0.11 -100

AC

0 -65 .5

1.8

1.0

5 -90 0.13

RE

-60

1.6

0.8

1.2 0.36

0.9

0.14 -80 -4 0

VE

( -j

0.49

-75

IN

1.4 0.15

0.35

ITI

-55

-70

0

6

-4

4

-5

0.3

-80 0

), Z0

0.1

AC

T

5

X/

-35

0.3

3

CAP

EN

0

CT

7

-60

N

-15

DU

0.1

-85

E SC

0.2

-30

2

PO

M

CE CO

4 0.4

0.3 1

0.3

EN G

/ Y0 ) ( -jB

0.4

9

0.1

8 0.1 0 -5 -25

0.4

0.6

0

-4

0.3

-20

.04

0.8 3.0

6 0.4

4.0

0.47

1.0

-15

0.2 9

0.2

0.4

0.28

0.2 1 -30

0.3

0.22

VEL WA -160

0.8

-20

0.2

5.0

-90

0.6

-10

TH S

0.4

0.1

10

0.48

0.2

20

D R D L OA T OW A -170

RESISTANCE COMPONENT (R/Z0), OR CONDUCTANCE COMPONENT (G/Y0)

0.1

0.4

0.0 9 1

0.4

0.4

0.39

Figure 6: At 1200 MHz: ζ L = 1.4 + 1.2j and z L = 50ζ L = 68 + 60j

3 Answer to a question Question: What is the error in z L in term of the standing wave ratio, S and the error in the distance between the minima, ∆L? Answer:

Expressing all lengths in wavelengths (lnormalized = λl ) V ( x ) = V + e− j2πx + V − e+ j2πx V−

V+

e− j2πx − e+ j2πx z0 z0 V (x) Z(x) = I (x) ∆Z ( x ) = Z ( x + ∆L) − Z ( x ) I (x) =

6

(17) (18) (19) (20)


Substituting the following relations V− V+ S−1 Γ=± S+1

ΓL =

(21) (22)

and using Mathematica to simplify the resulting expression expanded in terms of ∆L and truncated at the first order  2πi (S2 −1) 1  ∆L Γ = + SS− +1 cos(2πa)− jS sin(2πa) ∆z = (23) 2πj(S2 −1)  ∆L Γ = − S−1 sin(2πa)+ jS cos(2πa)

S +1

4 Questions 1.

∆L λ

≤ 0.5

2. 0 ≤ ∆L λ ≤ 0.25 for inductive loads and −0.25 ≤ loads. ( ) −|Γ| 3. z L,min = z0 11+| and is real. Γ| ( 4. z L,max = z0

1+|Γ| |Γ|−1

) and is real.

7

∆L λ

≤ 0 for capacitive


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.