guilford journal of chemistry volume 3 (2009-2010)

Page 32

submerged in 308 K water.v In their results they stated that the height did increase with the temperature and the 263 K bottle had an explosion height of 20 centimeters, the 298 K bottle had an explosion height of 1 meter, and the 308 K bottle had an explosion height of 3 meters.v These results show that when there was a 45 K change in the substance the soda was heated in then there was a corresponding 280 centimeter change in the height of the explosion. In one other Experiment done by professor Coffey the experimental procedure was the same but the data collected was the amount of mass lost in the explosion not the height of the explosion. Coffey tested three temperatures of soda, these were at 320 K, 311 K, and 279 K.v Coffey’s results were similar to the results of the other two experiments. She stated that the higher the temperature of a bottle, the more mass lost in the explosion, which means the larger the explosion. In Coffey’s results the bottle of soda at 279 K lost 1280 grams, the next at 311 K lost 1350 grams, and the last at 320 K lost 1450 grams.v This shows that with a difference of 41 K there was a corresponding difference of 170 grams lost. Each of the above experiments had different results, however all of them demonstrated a clear relationship between the temperature of the bottle and the size of the explosion produced by this experiment. Although all of these tests had only one trial each when viewed together it is possible to conclude that the higher the temperature of the bottle of soda is, the bigger the resulting explosion will be. This is because if you view the three separate experiments as one, each could show one trial and the same conclusions would be made. In order to fully analyze however, more experiments with more trials would be needed.

32


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.