80 Capítulo 4 Diseño de vigas rectangulares y losas en una dirección En las expresiones precedentes se usaron los siguientes valores: U = carga de diseño o última que la estructura necesita poder resistir D = carga muerta F = cargas debidas al peso y presión de Àuidos T = efectos totales de la temperatura, Àujo, contracción, asentamientos diferenciales y concreto compensador de la contracción L = carga viva H = cargas debidas al peso y a la presión lateral del suelo, presión del agua subterránea o presión de materiales a granel Lr = carga viva de techo S = carga de nieve R = carga pluvial W = carga eólica E = efectos sísmicos o de carga de terremoto Cuando sea necesario considerar los efectos de impacto, deberán incluirse con las cargas vivas según la sección 9.2.2 del ACI. Tales situaciones ocurren cuando esas cargas se aplican rápidamente, tal como los garajes de estacionamiento, elevadores, muelles de carga y otros. Las combinaciones de carga presentadas en las ecuaciones. 9-6 y 9-7 del ACI contienen un valor de 0.9D. Este factor 0.9 considera los casos en donde las cargas muertas mayores tienden a reducir los efectos de otras cargas. Un ejemplo obvio de tal situación puede ocurrir en edi¿cios altos que están sujetos a viento lateral y a fuerzas sísmicas donde el volteo puede ser una posibilidad. Como consecuencia, las cargas muertas se reducen aproximadamente 10% para tener en cuenta situaciones donde pudieron haber sido sobreestimadas. El lector debe darse cuenta que los tamaños de los factores de carga no varían en proporción a la importancia de la falla. Usted puede pensar que deberían usarse factores de carga mayores para hospitales o edi¿cios altos que para establos de ganado, pero ése no es el caso. Los factores de carga se desarrollaron con la hipótesis de que los proyectistas considerarían la seriedad de una posible falla al especi¿car la magnitud de sus cargas de servicio. Además, los factores de carga del ACI son valores mínimos y los proyectistas tienen toda la libertad de usar factores mayores si así lo desean. Sin embargo, la magnitud de las cargas eólicas y las cargas sísmicas, reÀejan la importancia de la estructura. Por ejemplo, en ASCE7 3 un hospital debe diseñarse para una carga de terremoto 50% mayor que para un edi¿cio comparable con menos consecuencias serias de la falla. Para algunas situaciones especiales, la sección 9.2 del ACI permite reducciones en los factores de carga especi¿cados. Estas situaciones son las siguientes: a) En las ecuaciones 9-3 a 9-5 del ACI el factor usado para las cargas vivas se puede reducir a 0.5, excepto para los garajes, para las áreas destinadas a asambleas públicas y todas las áreas donde las cargas vivas exceden de 100 lb/pie2. b) Si la carga eólica de diseño se ha obtenido sin usar el factor de direccionalidad del viento, se permite al proyectista usar 1.3W en lugar de 1.6W en las ecuaciones 9-4 y 9-6. c) Frecuentemente, los códigos de construcciones y las referencias de carga de diseño convierten las cargas sísmicas a valores de nivel de resistencia (es decir, efectivamente ya se han multiplicado por un factor de carga). Ésta es la situación supuesta en las ecuaciones 9-5 y 9-7 del ACI. Sin embargo, si se especi¿can fuerzas sísmicas como cargas de servicio, será necesario usar 1.4E en estas dos ecuaciones.
3 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures. ASCE 7-05 (Reston, VA: American Society of Civil Engineers), pág. 116.
ALFAOMEGA
Cap_04_McCormac-Brown.indd 80
DISEÑO DE CONCRETO REFORZADO - MCCORMAC
5/24/11 9:41 AM