Tutorial Matllab

Page 52

Aprenda Matlab 7.0 como si estuviera en Primero

A^n

página 44

está definida si A es cuadrada y n un número real. Si n es entero, el resultado se calcula por multiplicaciones sucesivas. Si n es real, el resultado se calcula como: A^n=X*D.^n*X' siendo [X,D]=eig(A)

4.5.3. FUNCIONES DE FACTORIZACIÓN Y/O DESCOMPOSICIÓN MATRICIAL A su vez este grupo de funciones se puede subdividir en 4 subgrupos: –

Funciones basadas en la factorización triangular (eliminación de Gauss): [L,U] = lu(A) B = inv(A) d = det(A) E = rref(A) [E,xc] = rref(A) U = chol(A) c = rcond(A)

descomposición de Crout (A = LU) de una matriz. La matriz L es una permutación de una matriz triangular inferior (dicha permutación es consecuencia del pivotamiento por columnas utilizado en la factorización) calcula la inversa de A. Equivale a B=inv(U)*inv(L) devuelve el determinante d de la matriz cuadrada A. Equivale a d=det(L)*det(U) reducción a forma de escalón (mediante la eliminación de Gauss con pivotamiento por columnas, haciendo ceros también encima de los pivots) de una matriz rectangular A reducción a forma de escalón con un vector xc que da información sobre una posible base del espacio de columnas de A descomposición de Cholesky de matriz simétrica y positivo-definida. Sólo se utiliza la diagonal y la parte triangular superior de A. El resultado es una matriz triangular superior tal que A = U'*U devuelve una estimación del recíproco de la condición numérica de la matriz A basada en la norma-1. Si el resultado es próximo a 1 la matriz A está bien condicionada; si es próximo a 0 no lo está.

Funciones basadas en el cálculo de valores y vectores propios: [X,D] = eig(A)

valores propios (diagonal de D) y vectores propios (columnas de X) de una matriz cuadrada A. Con frecuencia el resultado es complejo (si A no es simétrica) [X,D] = eig(A,B) valores propios (diagonal de D) y vectores propios (columnas de X) de dos matrices cuadradas A y B (Ax = λBx). Los vectores propios están normalizados de modo que X'*B*X=I. Cuando A es simétrica y B es simétrica y definida-positiva se puede utilizar [X,D] = eig(A,B,'chol'). –

Funciones basadas en la descomposición QR: [Q,R] = qr(A)

[Q,R] = qr(A,0) [Q,R,E]=qr(A) B = null(A)

descomposición QR de una matriz rectangular. Se utiliza para sistemas con más ecuaciones que incógnitas. Q es una matriz ortogonal, es decir, es cuadrada aunque A no lo sea (m>n). No se garantiza que los elementos diagonales de R sean positivos, lo cual crea dificultades en algunos problemas (esa factorización no coincide con la de Gram-Schmidt). similar a la anterior, pero con Q del mismo tamaño que A, es decir, sin completar una base ortonormal cuando m>n. factorización QR con pivotamiento por columnas. La matriz E es una matriz de permutación tal que A*E=Q*R. La matriz E se determina de modo que los elementos de abs(diag(R)) son decrecientes. devuelve una base ortonormal del subespacio nulo (kernel, o conjunto de vectores x tales que Ax = 0) de la matriz rectangular A, calculada mediante la descomposición de valores singulares. Las columnas de B son ortonormales: B'*B=I.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.