GeneWatch Vol. 24 No. 2

Page 17

become the safest site? The answer lies in Rift Valley fever virus, which is transmitted by mosquitos from cattle and other farm animals to humans. Even though many of Boston’s streets were laid out by cattle in colonial times, there are no cattle there now. So Rift Valley fever virus would infect more people in suburban or rural settings where farm animals live. Urban Roxbury then becomes the safest place for the NEIDL compared to suburban and urban locations. Between the first and second riskanalysis attempts, Massachusetts changed governors from Mitt Romney to Deval Patrick and the management of EOEA changed as well. The new EOEA folks made a smart move. They realized that they did not have the background to understand the issues, so they asked the National Academy of Sciences to appoint a National Research Council (NRC) committee of experts to critique the risk analysis. The NRC committee delivered their detailed critique in late 2007, concluding that the NIH analysis was not sound and credible, that the worst case scenarios had not been adequately identified, and that the information underlying the alternative site analysis was insufficient or inappropriate. The critique also questioned the infectious agents selected. Now back to the in-progress Tetra Tech risk analysis. Tetra Tech presented its preliminary results to local residents at the Roxbury Community College in October 2010. Among its findings was that a secondary infection of SARS to someone outside the lab from a lab researcher would occur VoluMe 24 NuMber 2

once in 10,000 years in a worst-case scenario, and likely only once in over a million years. Tetra Tech looked at only two scenarios, a centrifuge accident and a massive earthquake that would level the laboratory. They did not look at the risk of a SARS-infected lab worker, unaware he/she was infected, transmitting the infection to someone outside the laboratory. The NRC committee commenting on the Tetra Tech preliminary work concluded “at this point in time it cannot endorse the illustrative analyses presented as scientifically and technically sound or likely to lead to a thorough analysis of the public health concerns previously raised by the NRC.” The committee also noted “Consideration of the available case studies (such as the SARS case described below) suggests the possibility that transfer of a pathogen outside the laboratory by an infected worker is an important class of risk events.” There have been at least three SARS escapes from laboratories through infected lab workers. The incident from the NRC 2010 document quoted below warns of the danger of a future SARS escape in a densely populated area. “In China, SARS/CoV was grown in a BSL-3 laboratory by a worker who apparently had worn inappropriate personal protective equipment (PPE) and then treated the sample to inactivate the virus before removing it to a BSL-1 laboratory for further work on the open bench. The worker failed to verify the complete inactivation of

the virus and subsequently became ill and was admitted to a fever hospital. The laboratory was not notified of this development and the worker later returned to the laboratory. A second worker who handled the “inactivated” sample also became ill. A graduate student who observed the laboratory procedure later traveled by train to her home several hundred miles away. After returning to the laboratory she became ill and once again traveled to her home by train where her mother, a physician, admitted her to a hospital and treated her. The student was asked if she worked with SARS/CoV (she said no because her research involved another virus). It was not until the mother became ill and died that SARS/CoV was identified. Other laboratory workers also became ill and other hospital personnel died. This case study illustrates several important points: people make mistakes (improper PPE); not everyone follows procedures (failure to test sample for inactivity); people may die if not properly diagnosed and treated.”1

Another message from this story is that research on deadly, highly contagious pathogens should be conducted only in BSL4 laboratories in isolated locations where extra precautions in addition to location are available, never in a populated area since SARS has also escaped from a BSL4 laboratory. How many bites of the apple will Boston University have before they realize that a BSL4 Laboratory in densely populated Boston is a bad and dangerous idea? When will the city or state step up and say “No! No BSL4 lab in Boston,” following Cambridge’s lead? Lynn C. Klotz is co-author of Breeding Bio Insecurity: How U.S. Biodefense Is Exporting Fear, Globalizing Risk, and Making Us All Less Secure. He is working with scientists and Roxbury residents to propose an alternative vision for the Boston University labs.

GeNeWatch 17


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.