Page 1

Embodied Energy & Embodied Carbon for a description of the sustainability of buildings and building products to understand the recycling MariaAntonia Barucco arch. Ph.D. researcher in Architectural Technology department of Design Cultures

UniversitĂ IUAV di Venezia

Recycling City 2. Energy, Recycling and the diffuse city Venice: June 28th - July 8th, 2013


52

change mental maps

us, today


51

a world of interconnected peoples


50

money

The money is an institution which creates trust. No person would consider it seriously even for a moment, if everyone else in the society were not used to it normally.


49

Howard Thomas Odum The modern economic systems have a lack. The lack is that goods and services produced by man are held in higher regard than those produced by nature, which are often underestimated or not evaluated (they are out of the monetary system)


48

οἶκος


47

οἶκος nomos

logos


46

devise a system of nomos and logos MORE ECONOMY

LESS ECOLOGY

MORE ECOLOGY

LESS ECONOMY


45

devise a system of nomos and logos MORE ECONOMY

LESS ECOLOGY

MORE ECOLOGY

LESS ECONOMY


44

devise a system of nomos and logos MORE ECONOMY

ill-considered growth

LESS ECOLOGY

MORE ECOLOGY

environmental disaster

LESS ECONOMY


43

devise a system of nomos and logos MORE ECONOMY

ill-considered growth

Enlightenment

LESS ECOLOGY

MORE ECOLOGY

environmental disaster

LESS ECONOMY

deep ecology


42

a sistema of scenarios MORE ECONOMY

ill-considered growth

LESS ECOLOGY

Enlightenment

MORE ECOLOGY

today in the central part of Veneto environmental disaster

deep ecology

LESS ECONOMY


41

es s

a sistema of scenarios

So c

ia

lB

us in

MORE ECONOMY

ill-considered growth

LESS ECOLOGY

Enlightenment

MORE ECOLOGY

today in the central part of Veneto environmental disaster

deep ecology

LESS ECONOMY


40

es s

a strategy

So c

ia

lB

us in

MORE ECONOMY

ill-considered growth

Enlightenment a hopeful tomorrow

LESS ECOLOGY

MORE ECOLOGY

environmental disaster

deep ecology

LESS ECONOMY


39

Yunus postulates a new world of business in which profit-maximizing enterprises and social-benefitmaximizing enterprises coexist. In addition, a social business would operate much like a profit-maximizing business in that the company as a whole grows financially and gains profits. The only difference is that the company's shareholders and investors would be reaccumulating their initial investment as opposed to receiving dividends. He calls the latter social business.

lB ia So c

professor Muhammad Yunus argues that the concept of the individual as being solely focused on profit maximizing ignores other aspects of life.

us in

es s

a strategy

a hopeful tomorrow


38

a strategy

Key ingredients to the success of the approach are education, institutions to make social businesses visible in the market place (a social stock market), rating agencies, appropriate impact assessment tools, indices to understand which social business is doing more and/ or better than other social businesses so that social investors are correctly guided.

a hopeful tomorrow


37

Howard Thomas Odum


36

from energy to eMergy

Increasing Quality 1000

1

Sun

sunlight

1000000

Plants

wood

1000

8000

2000

Fossilization

coal

500

Industry

electricity

125

Decreasing Quantity


35

fluctuations in the cost of oil and events that have influence on the concept of sustainability


34 Topic 3

Climate change and its impacts in the near and long term under different scenarios

Stern Report

Examples of impacts associated with global average temperature change (Impacts will vary by extent of adaptation, rate of temperature change and socio-economic pathway) Global average annual temperature change relative to 1980-1999 (°C) 0

WATER

1

2

3

4

5 °C

Increased water availability in moist tropics and high latitudes

WGII 3.4.1, 3.4.3

Decreasing water availability and increasing drought in mid-latitudes and semi-arid low latitudes

3.ES, 3.4.1, 3.4.3

Hundreds of millions of people exposed to increased water stress

3.5.1, T3.3, 20.6.2, TS.B5

Significant† extinctions around the globe

Up to 30% of species at increasing risk of extinction Increased coral bleaching

Most corals bleached

4.ES, 4.4.11 T4.1, F4.4, B4.4, 6.4.1, 6.6.5, B6.1 4.ES, T4.1, F4.2, F4.4 4.2.2, 4.4.1, 4.4.4, 4.4.5, 4.4.6, 4.4.10, B4.5 19.3.5

Widespread coral mortality Terrestrial biosphere tends toward a net carbon source as: ~40% of ecosystems affected ~15%

ECOSYSTEMS Increasing species range shifts and wildfire risk

Ecosystem changes due to weakening of the meridional overturning circulation

5.ES, 5.4.7

Complex, localised negative impacts on small holders, subsistence farmers and fishers

FOOD

Tendencies for cereal productivity to decrease in low latitudes

Productivity of all cereals decreases in low latitudes

5.ES, 5.4.2, F5.2

Tendencies for some cereal productivity to increase at mid- to high latitudes

Cereal productivity to decrease in some regions

5.ES, 5.4.2, F5.2 6.ES, 6.3.2, 6.4.1, 6.4.2

Increased damage from floods and storms About 30% of global coastal wetlands lost ‡

COASTS

6.4.1

Millions more people could experience coastal flooding each year

T6.6, F6.8, TS.B5 8.ES, 8.4.1, 8.7, T8.2, T8.4 8.ES, 8.2.2, 8.2.3, 8.4.1, 8.4.2, 8.7, T8.3, F8.3 8.ES, 8.2.8, 8.7, B8.4 8.6.1

Increasing burden from malnutrition, diarrhoeal, cardio-respiratory and infectious diseases Increased morbidity and mortality from heat waves, floods and droughts

HEALTH

Changed distribution of some disease vectors Substantial burden on health services

0

1 † Significant is defined here as more than 40%.

2

3

4

5 °C

‡ Based on average rate of sea level rise of 4.2mm/year from 2000 to 2080.


2009 Copenaghen protocoll

2007 Stern Reviewe

2005 Kyoto protocoll

2002 Earth Summit in Johannesburg

1999 CIB A21

2003 terrorist attack in the U.S.

2011 nuclear disaster at Fukushima Dai-ichi

2008 bankruptcy of Lehman Brothers

1997 Protocollo di Kyoto - An Inconvenient Truth

1993 Commissione ONU per lo Sviluppo Sostenibile Fifth Action Programme on the Environment (EU)

1992 Earth Summit in Rio (A21)

1979 nuclear disaster at Three Mile Island 1987 Brundtland - Our Common Future

1974 Fondazione Bariloche - Limits of Poverity

1973 Yom Kippur War

1972 UE - European Environmental Action Programme

1972 Dubos, Ward - Only One Earth -- Club di Roma - Limits of Growth Dichiarazione di Stoccolma sull’Ambiente Umano

1968 Ehlich - Population Bomb

1962 Carson - Silent Spring

33

facts and international regulations ...


1962 Carson - Silent Spring

32

Silent Spring


31

CIB Agenda 21

Agenda 21

1999 CIB A21

on sustainable construction

CIB Report Publication 237


30

the machine called "building" (in the course of time)

consumption of resources, Embodied Carbon, ...

hypothetical boundary

emissions of pollutants into the atmosphere, emissions of pollutants into water, noise, waste, heat, ...


29

the moral of the story is ...


28

hopefull monsters & ineluctable costs

enormous production of green energy

everybody live in zero energy building


27

hopefull monsters & ineluctable costs 2,12 MJ/kg 0,241 KgCO2/Kg 25,40 MJ/kg 1,78 KgCO2/Kg 23 MJ per brick 1,46 KgCO2 per brick 8,5 MJ/Kg 0,46 KgCO2/Kg 15 MJ/Kg 0,85 KgCO2/Kg


26

the weight of the materials

1,78 KgCO2/Kg

0,46 KgCO2/Kg


25

manufacture

use maintainance repairs

USE

life of the building

construction

replacement

demolition transport landfill

reuse/recycling

renovation end of ilfe

life cycle cost

ve

cradle to gra

life cycle assessment

transport

PRODUCTION

transport

BUILD

raw materials

END OF LIFE

cradle to gate

environmental performance evaluation

ecoprofile

the machine called "building"


24

transport raw materials

manufacture transport construction

waste

BUILD

raw materials

PRODUCTION

the machine called "building"

land use greenhouse effect

use

air emissions

maintainance repairs

USE

energy

toxicity to humans

landfill

reuse/recycling

transport

END OF LIFE

renovation demolition

solid waste depletion of the ozone layer ecotoxicity

replacement water

depletion of biotic resources

water emissions

acidification eutrophication


23

the description of input and output HIGH INTEGRATION WITH SYSTEMS OF PLANNING AND CONTROL

estimation of EE internal evaluation

participatory assessment

LOW INVOLVEMENT OF STAKEHOLDERS

HIGH INVOLVEMENT OF STAKEHOLDERS

accounting

comunication

LOW INTEGRATION WITH SYSTEMS OF PLANNING AND CONTROL

type III certifications


22

describe


20

how to innovate

FIRM

S U P P LY

process

new meanings new performances

product

semantic innovation organizational innovation

product innovation


19

difficult to measure


18

5(*4&$($#4'"&)#+3+%%"

()2*% ,+0%#28'+($&$&09'52))+ 3$55"&#$%$&3'&%#"07'00'+($ VRQRPHQRGHOOHDELWD]LRQL VHUYLWHGDOO·HQHUJLDHOHWWULFD

()1*%

()/*

09'52))+&3$5&4#"(3$&'3#+$5$%%#',+ FKHUDSSUHVHQWDO· 3$45'&'7)'"(%'&'(0%"55"%'&

LOGHOOHDELWD]LRQLq 0$#9'%+&3"55"&#$%$& 3'&$($#4'"&$5$%%#',"

()++% )#+4#$00'9"&#')#$0"&3$5&%$#7+$5$%%#',+ LOGHOOHDELWD]LRQLqVHUYLWR 3"55"&#$%$&3'&$($#4'"&$5$%%#',"

()/, H$44$&QAQ&3$5&?@AB&)$#&5"& #'328'+($&3$'&,+(027'& $($#4$%','&3$5&,+0%#2'%+

(),.% RWWREUHqO·DQQRGHOGLVDVWURGHO9DMRQW

3)604 <!=>&3$5&7$#,"%+% C@AUA&VWK



F'$($&0+%%+0,#'%%+& '5&)#+%+,+55+&3'&IJ+%+

.**. )',,+&3$55$&$7'00'+('& 3'&4"0&0$##"&'(&"%7+0:$#"

()0) F'$($&)#+)+0%+&$&"))#+9"%+&'5& )'"(+&$($#4$%',+&("8'+("5$-&(+(& 9'$($&)$#G&7"'&"%%2"%+

'LUHWWLYD(XURSHD&(FKLDPDWD K!LM&*K($#4J&!$#:+#7"(,$&+:&M2'3'(4& L'#$,%'9$.<& <

CD?A

CD?B

CD?E

CD?U

=5&L$,#$%+&H$4'05"%'9+&?@C&3$5&?@NDONCDDE& UHQGHDWWXDWLYDODOHJJHGHO·FLzDOILQH 3'&#$,$)'#$&5"&L'#$%%'9"&CDDCN@?NPK& <

())*

09'52))+&3$5&%$#7+$5$%%'#,+& 5"&,$(%#"5$&%$#7+5$5$%%#'," 3'&!+#%+&S+55$&:2(8'+("&"&)'$(+&#$4'7$ '5&F$($%+&$0)+#%"&$($#4'"&$5$%%#',"& "55$&"5%#$&#$4'+('&'%"5'"($

CD?Q



3%+*4&$($#4'"&)#+3+%%" CDDA

CDDB

?@@@

?@@O

?@@A

?@@B

?@@E

?@@U

?@@Q

?@@C

,-&&.#/0.12'03.4%'5:#"&'5&CDDO&$&'5&CDD5$& 3+7"(3$&)$#& #'0%#2%%2#"8'+($& FUHVFRQRGHO

.**+

F'$($&)#+)+0%"-&"))#+9"%"&7"& (+(&#$0"&"%%2"%'9"&5"&H$44$&?D

()0,&

,+0%'%28'+($&3'&KTKH&$& ("8'+("5'88"8'+($&3$5&0'0%$7"&$5$%%#',+

?@@?

())(

()0*% 09'52))+&3$5&%$#7+$5$%%'#,+& $(%#"&'(&:2(8'+($ 5"&)#'7"&2('%R&3$55"&,$(%#"5$&%$#7+5$5$%%#'," 3'&!+#%+&S+55$

(),.%

?@@D

?@O@

?@OO

?@OA

?@OB

?@OE

?@OU

?@OQ

?@OC

?@O?

?@OD

?@A@

?@AO

?@AA

?@AB

?@AE

?@AU

?@AQ

?@AC

?@A?

?@AD

?@B@

?@BO

?@BA

?@BB

?@BE

?@BU

?@BQ

?@BC

?@B?

?@BD

?@E@

?@EO

?@EA

?@EB

?@EE

?@EU

?@EQ

?@EC

*:K

?@E?

?@ED

?@UD

?@QD

?@CD

*:K

CDDE



*:K *:K

CDDU



"0'11'(#')2(3

*:K

*:K

;"#$%$&'&N&<<<

C@AUA&VWK C@AUA&VWK

3+6)4%



,$(*-&'(#")./

3+614%

())1%3%.*(* .*(* #6"#$%$&'&N&?B&"((' ,-&&.#57'8.#$'1/074%'5-#9#-1:.51%'5FRPSUDYHQGLWH SUH]]L FRQGRQLSROLWLFKHGLVRVWHJQR

CD?C

()0+3%())1

CD??

$%$&'#,-&&.#/0.12'03.4%'5FRPSUDYHQGLWH SUH]]L

CD?D

+"#$%$&'&N&@&"(('

FRPSUDYHQGLWH SUH]]L

CDD@

*"#$%$&'&N&O&"(('

LQL]LRDEXVYLVPR

4(#1-0()./

()/.3()/, )"#$%$&'&N&E&"<

,+(0+5'3"7$(%+/ ,"0"&3'&)#+)#'$%R-& 0$,+(3$&,"0$

CDDO

(),,%()/. !"#$%$&'&N&A&"(('

3/6.4%

?UBQ

(2+9"&4$($#"8'+($&3'&$3':','

(/6+4

()//3%()0+

()+(%3(),, ("#$%$&'&N&?E&"((' ,',5+&3$55"&#',+0%#28'+($/& $0)"(0'+($ ULFRVWUX]LRQHHERRP $,+(+7',+

#$,2)$#+&,$(%#'&0%+#','& *(+(&'(&9$($%+.

AAE

-&'%.**+

!"#$%&'%%.**+ >&)"#%'#$&3"5&?@AB&$&:'(+&"5&CDDE-& 0'&"::$#7"&5"&#$"5'88"8'+($&3'& $3':','&,+(&0%#2%%2#"&"&)'5"0%#'&'(& ,$7$(%+&"#7"%+&,+(&72#"%2#$&3'& %"7)+("7$(%+&,+(&3+))'"&)"#%$& '(&3+))'"&)"#$%$&'(&5"%$#'8'+-& LVRODQWHQHOO·LQWHUFDSHGLQHH #'9$0%'7$(%+&'(&'(%+(",+&0'"& DOO·LQWHUQRFKHDOO·HVWHUQR

CDDQ

!"#$%&'%()/, 3HUO·HGLOL]LDUHVLGHQ]LDOHSULYDWD )#$3+7'("(+&5$&0%#2%%2#$&"&)'5"0%#'&'(& ,$7$(%+&"#7"%+&,+7)5$%"%$&,+(& 72#"%2#$&3'&%"7)+("7$(%+&,+(& 3+))'"&)"#%$&'(&5"%$#'8'+&:",,'"&9'0%"-& 3HUO·HGLOL]LDUHVLGHQ]LDOHSXEEOLFD 9$(4+(+&'7)'$4"%'&0'0%$7'& '(320%#'"5'88"%'&)$#&5"&#$"5'88"8'+($&3'& )"#$%'&$&0+5"'&'(&,$7$(%+&"#7"%+&&=(& "5%$#("%'9"&9'$($&#$"5'88"%"& XQ·LQWHODLDWXUDLQWUDYLHSLODVWULLQ ,$7$(%+&"#7"%+-&

CDDC

!"#$%&'%(),* ;2#"%2#"&'(&7"%%+('&)'$('&"&%#$& %$0%$&:",,'"&"&9'0%"< ;2#"%2#"&'(&7"%%+('&)'$('&,+(& '(%$#,")$3'($<

CDD?

;2#"%2#"&'(&7"%%+('&)'$('

CDDD

!"#$%&'%()+*

!"#$%$&'(&)'$%#"&*'(%+(",+-&)'$%#"-& '(%+(",+./ ,+(&)'$%#$&012"3#"%$&4#+00+5"("6 7$(%$&($55$&8+($&7+(%"($LQSURVVLPLWjGHLFRUVLG·DFTXD 9$('9"&2%'5'88"%+&3$5&)'$%#"7$& "9$(%$&:+#7"&'##$4+5"#$&$& 5$44$#7$(%$&"##+%+(3"%"

4'4+')0"$4%5()4(15$-&'(#'

!"#$%&'%()(*

!"#"$%&'(#')"*'+'&'"

chronological organization


17

typological organization tipi di materiale impiegato per la costruzione CATEGORIE

SOTTOCLASSI

CLASSI

P / A / niente

Edificio industriale (pertinenza) Torre Torre industriale o ciminiera EDIFICIO INDUSTRIALE Cortile interno Dividente architettonica Edificio civile (pertinenza) Baracca EDIFICIO IN COSTRUZIONE EDIFICIO CIVILE Impianti sportivi (pertinenza) Scuola (pertinenza) Chiesa Limite area ferroviaria (pertinenza) Chiesa o tabernacolo Campeggio Campo da tennis e impianti sportivi Campo sportivo Impianti sportivi (edificio) Impianto sportivo Tendone SCUOLA OSPEDALE Campanile Chiesa (pertinenza) Cimitero Cimitero (pertinenza) Autorimessa o garage (fuori terra) Casello autostradale (edificio) Casello ferroviario (edificio) Casello o stazione ferroviaria o fermata Scalo merci (edificio) Stazione - fermata - ferrovia (edificio) Silos Stalla o allevamento agricolo o fienile Gradinata Isolato Manufatti vari Monumento Monumento pietra o colonna indicatrice Parco o giardino Portico o loggia o corpo aggettante Rifugio alpino Rudere o edificio semi diroccato Scalinata Stradina interna Tendone pressurizzato Tettoia o pensilina

industriale (pertinenza) industriale (attrezzatura) industriale (attrezzatura) INDUSTRIALE civile (pertinenza) civile (pertinenza) civile (pertinenza) civile (attrezzatura) CIVILE (-) CIVILE attrezzatura sport (pertinenza) attrezzatura scolastica (pertinenza) attrezzatura religiosa (pertinenza) attrezzatura mobilità (pertinenza) attrezzatura religiosa (attrezzatura) attrezzatura sport attrezzatura sport attrezzatura sport attrezzatura sport attrezzatura sport attrezzatura sport ATTREZZATURA SCOLASTICA ATTREZZATURA SANITARIA attrezzatura religiosa attrezzatura religiosa attrezzatura religiosa attrezzatura religiosa attrezzatura mobilità attrezzatura mobilità attrezzatura mobilità attrezzatura mobilità attrezzatura mobilità attrezzatura mobilità attrezzatura agricola attrezzatura agricola altro altro altro altro altro altro altro altro altro altro altro altro altro

industriale industriale industriale INDUSTRIALE civile civile civile civile CIVILE CIVILE attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura ATTREZZATURA ATTREZZATURA attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura altro altro altro altro altro altro altro altro altro altro altro altro altro

industriale P industriale A industriale A INDUSTRIALE civile P civile P civile P civile A CIVILE CIVILE attrezzatura P attrezzatura P attrezzatura P attrezzatura P attrezzatura A attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura ATTREZZATURA ATTREZZATURA attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura attrezzatura altro altro altro altro altro altro altro altro altro altro altro altro altro

pietra

cemento

acciaio

laterizio

legno

edifici utilizzati in ambito... boh!

residenziale

industriale

agricolo

terziario


16

documentation about building materials Ipotesi di cronologia delle tipologie tecnologiche per la realizzazione di edifici residenziali in Italia

Peso al m3 Kg/m3 intonaco

stima di Embodied Energy ed Embodied Carbon

bimattone

spessore

Peso al m2

EE al m2

EC al m2

cm

Kg/m2

MJ

KgCO2

316

880

63,92

1400

1,5

2006,9

12

aria

Strutture in muratura portante con diverse tecnologie. I solai vengono generalmente costruito in legno.

bimattone

Parete in pietra:

intonaco

Peso al m3 Kg/m3

spessore

Peso al m2

EE al m2

EC al m2

cm

Kg/m2

MJ

KgCO2

556

250,8

15,22

intonaco

1400

2

pietra

2000

25

intonaco

1400

2

1910 Vengono ancora realizzate abitazioni in muratura portante (muratura in laterizio pieno a tre teste) ma si cominciano ad impiegate anche le strutture a pilastri in cemento armato, completate con murature di tamponamento: • con doppia parete in laterizio, intercapedine d’aria e rivestimento in intonaco sia all’interno che all’esterno • con doppia parete in laterizio faccia vista, intercapedine d’aria e rivestimento interno in intonaco Peso al m3 Kg/m3

spessore

Peso al m2

EE al m2

EC al m2

cm

Kg/m2

MJ

KgCO2

670

1981,8

145,08

Intonaco int.

1400

1,5

mattoni

1800

36

Kg/m3

spessore

Peso al m2

EE al m2

EC al m2

cm

Kg/m2

MJ

KgCO2

392

820,12

91,028

intonaco

1400

1,5

c.l.s. + ferri

1400

25*

intonaco

1400

1,5

2006,9

12

1400

1,5

1976 Legge 373 del 1976 per la riduzione dei consumi energetici del costruito, dunque comincia a diffondersi l’utilizzo di materiali isolanti per la coibentazione dell’involucro edilizio, in particolare viene impiegata la lana di roccia Si afferma la realizzazione di edifici con struttura a pilastri in cemento armato con murature di tamponamento con doppia parte in doppia parete in laterizio, isolante nell’intercapedine e rivestimento in intonaco sia all’interno che all’esterno.

intonaco

Peso al m3

spessore

Peso al m2

EE al m2

EC al m2

Kg/m3

cm

Kg/m2

MJ

KgCO2

323

997,6

71,27

1400

1,5

bimattone

2006,9

12

l. di roccia

60

12

bimattone

2006,9

12

1400

1,5

intonaco

1989 Viene proposto e approvato il piano energetico nazionale, non viene però mai attuato 1991 Viene proposta, approvata ma non resa attuativa la Legge 10

1970 Per l’edilizia residenziale privata predominano le strutture a pilastri in cemento armato completate con murature di tamponamento con doppia parte in laterizio faccia vista, isolante nell’intercapedine e rivestimento interno in intonaco; l’impalcato orizzontale viene realizzato in laterocemento. Per l’edilizia residenziale pubblica vengono impiegati sistemi industrializzati per la realizzazione di pareti e solai in cemento armato nel caso di tecnologia coffrage-tunnel oppure banche et table. Peso al m3

10

* spessore medio di gabbia strutturale + tamponamento In alternativa viene realizzata un’intelaiatura in travi e pilastri in cemento armato, impalcato orizzontale in laterocemento e tamponamento verticale in pannelli di cemento armato o con doppia parete in laterizio (anche bimattoni, non più solo mattoni pieni), intercapedine d’aria e rivestimento in intonaco sia all’interno che all’esterno.

2002 Direttiva Europea 2002/91/CE, chiamata EPDB (Energy Performance of Buiding Directive). Questa direttiva è rivolta a migliorare l’efficienza energetica degli edifici e degli impianti, in particolare i sistemi di generazione di acqua calda sanitaria (alimentati a gas o a petrolio) e gli impianti di condizionamento dell’aria. 2005 Il Decreto Legislativo 192 del 19/08/2005 rende attuativa la legge 10 del ’91, ciò al fine di recepire la Direttiva 2002/91/CE 2006 Il Decreto Legislativo 311 del 29 dicembre 2006 aggiorna il Decreto Legislativo 192 del 2005 per renderlo adeguato alle indicazioni fornite dall’Unione Europea nel 2002. Tale Decreto ha il titolo di “Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia”. 2010 La Direttiva Europea n. 91 del 2002 viene aggiornata con un nuovo testo per l’EPDB, il 2010.31.UE 2012 l’Italia recepisce l'aggiornamento della direttiva europea con il Decreto Legislativo n. 104 del 28 giugno


15

choose a database

http://www.ghgprotocol.org/Third-Party-Databases/Bath-ICE


14

spatial distribution


data

6121 Km with an electric car EE (MJ/m2)

ante 1908

1908-1966

1966-1981

1981-2006

2006

small single-family home

913,33

1143,97

2358,62

2568,12

2937,62

single-family home or small apartment house

1333,65

1008,06

1854,48

1953,87

2209,43

apartment house

719,11

1202,17

1305,77

1406,19

1238,34

MJ per square meter (square meters readable on the map, estimated data for medium volumes, the volume is defined according to the estimated number of floors)

3000 2250 1500 750 0 ante 1908

1908-1966

small single-family home single-family home or small apartment house apartment house

1966-1981

1981-2006

2006


12

data EC (Kg CO2/m2)

ante 1908

1908-1966

1966-1981

1981-2006

2006

small single-family home

87,46

179,96

200,78

212,77

221,87

single-family home or small apartment house

104,79

145,84

159,15

164,50

174,89

apartment house

69,84

103,69

113,47

118,48

106,40

Kg CO2 per square meter (square meters readable on the map, estimated data for medium volumes, the volume is defined according to the estimated number of floors)

300 225 150 75 0 ante 1908

1908-1966

small single-family home single-family home or small apartment house apartment house

1966-1981

1981-2006

2006


11

data EE

ante 1908

1908-1966

1966-1981

1981-2006

2006

factory building plan ! 400 m2 - h = 6 m

1399,30

1329,68

1431,98

1557,03

2032,67

factory building plan > 400 m2 - h = 10 m

1379,67

1194,32

1287,58

1440,29

1915,93

MJ per square meter (square meters readable on the map, estimated data for medium volumes, the volume is defined according to the average height)

factory building plan ! 400 m2 - h = 6 m factory building plan > 400 m2 - h = 10 m

2100 1575 1050 525 0 ante 1908

1908-1966

1966-1981

1981-2006

2006


10

data EC

ante 1908

1908-1966

1966-1981

1981-2006

2006

factory building plan ! 400 m2 - h = 6 m

154,60

129,84

156,12

162,42

162,42

factory building plan > 400 m2 - h = 10 m

182,70

137,72

115,00

147,58

147,58

Kg CO2 per square meter (square meters readable on the map, estimated data for medium volumes, the volume is defined according to the average height) factory building plan ! 400 m2 - h = 6 m factory building plan > 400 m2 - h = 10 m

190 143 95 48 0 ante 1908

1908-1966

1966-1981

1981-2006

2006


9

data


8

data EE

ante 1908

1908-1966

1966-1981

1981-2006

2006

farm building plan ! 400 m2 - h = 6 m

1379,31

808,71

853,34

1129,24

1604,88

farm building plan > 400 m2 - h = 6 m

1375,88

696,79

713,51

969,93

1692,74

MJ per square meter (square meters readable on the map, estimated data for medium volumes, the volume is defined according to the average height)

farm building plan ! 400 m2 - h = 6 m farm building plan > 400 m2 - h = 6 m

1700 1275 850 425 0 ante 1908

1908-1966

1966-1981

1981-2006

2006


7

data EC

ante 1908

1908-1966

1966-1981

1981-2006

2006

farm building plan ! 400 m2 - h = 6 m

180,09

237,42

216,55

155,15

255,85

farm building plan > 400 m2 - h = 6 m

154,95

190,16

152,33

100,13

137,24

Kg CO2 per square meter (square meters readable on the map, estimated data for medium volumes, the volume is defined according to the average height)

farm building plan ! 400 m2 - h = 6 m farm building plan > 400 m2 - h = 6 m

300 225 150 75 0 ante 1908

1908-1966

1966-1981

1981-2006

no data about

asbestos

2006


6

life expectancy

max 2

ordinary maintenance

max 1

recovery

extraordinary maintenance

data

natur

al ag

ing p

roces

s

time


5

recovery

data

time


4

recovery

data

natur

al ag

ing p

roces

s

ai

tm

ou

ith

w e nt e nc na

time


3

the time (and the value of the cathedrals)

BERTOLT BRECHT (1935) Questions From a Worker Who Reads Who built Thebes of the 7 gates? In the books you will read the names of kings. [...] Every page a victory. Who cooked the feast for the victors ? Every 10 years a great man. Who paid the bill? So many reports. So many questions.


2

Agenda 21 on sustainable construction

resources consumption environmental loads ENERGY USE

WATER

• direct use 30% • inefficient water • indirect use 50% use • lack of water resources in some countries

MATERIALS

LAND

• impact on bio• conservation of diversity throught open space and fragmentation of rural settlements natural areas and • trends towards ecosystems high/low density • use of renewable buildings materials

main challenges to construction industry promoting energy efficiency

reduction use of high quality drinking water

selection materials contributing to a on environmnetal sustainable urban performance development

social, cultural & economic issues • contribution to poverty alleviation • healty & safe working environment

DEMAND FOR SUSTAINABLE DEVELOPMENT


2

Agenda 21 on sustainable construction

resources consumption environmental loads ENERGY USE

WATER

• direct use 30% • inefficient water • indirect use 50% use • lack of water resources in some countries

MATERIALS

LAND

• impact on bio• conservation of diversity throught open space and fragmentation of rural settlements natural areas and • trends towards ecosystems high/low density • use of renewable buildings materials

main challenges to construction industry promoting energy efficiency

reduction use of high quality drinking water

selection materials contributing to a on environmnetal sustainable urban performance development

social, cultural & economic issues • contribution to poverty alleviation • healty & safe working environment

DEMAND FOR SUSTAINABLE DEVELOPMENT


1

Agenda 21 on sustainable construction developed countries

framework & guidance material for urban decision making •urban management •policy integration •ecosystems thinking •co-operation and partnership

sustainable development of cities urban growth •efficient energy use •transport systems •compact cities •water management •recycling

resource use & waste management •fixing boundaries •compact mixed-use neighbourhougds •renewable of existing fabric •urban agriculture

social and economical issues small, high-density neighbourhought centred around mixed-use nucleus, lower density residential components, eco-fiendly transit system

developing countries encouraging social equity, effective resource use and economic development

•social equity •efficient resource use •economic development •management practicies


1

Agenda 21 on sustainable construction developed countries

framework & guidance material for urban decision making •urban management •policy integration •ecosystems thinking •co-operation and partnership

sustainable development of cities urban growth •efficient energy use •transport systems •compact cities •water management •recycling

resource use & waste management •fixing boundaries •compact mixed-use neighbourhougds •renewable of existing fabric •urban agriculture

social and economical issues small, high-density neighbourhought centred around mixed-use nucleus, lower density residential components, eco-fiendly transit system

developing countries encouraging social equity, effective resource use and economic development

•social equity •efficient resource use •economic development •management practicies


too brief

bibliography

www.cibworld.nl CIB, Agenda 21 on sustainable construction, CIB report Publication n. 237, 1999 Barucco M.A., “Metodi di valutazione della sostenibilità del costruito”, Utet Editore, Torino, 2011 Boulding K. E., Beyond Economics. Essays on Society, Religion and Ethics, The University of Michigan Press, 1968 McLuhan Marshal, Understanding Media: The Extensions of Man, Gingko Press, Berkeley, 1964 Manfron V., Qualità ed affidabilità in edilizia - Ricerche di Tecnologia dell'architettura, Milano, FrancoAngeli, 1995, rist. 2003 Odum H.T., Environmental Accounting, Emergy and environmental decision making, John Wiley & Sons, 1996. ISO 14025: 2006 - Environmental Labels and Declarations - Type III environmental declarations -- Principles and procedures.

Embodied Energy and Embodied Carbon  
Read more
Read more
Similar to
Popular now
Just for you