Eu research 06 digital mag

Page 29

Current treatment This treatment with AmbuLung would represent a radical change from current methods of treating chronic obstructive pulmonary disease (COPD). The first choice at the moment is to use noninvasive mechanical ventilation, but if that fails then patients are intubated and put on invasive mechanical ventilation, from which Schneider says it is difficult to recover. “It’s normally very difficult to get patients away from invasive mechanical ventilation back to non-invasive mechanical ventilation, or even to a situation where they don’t need any ventilation at all,” he outlines. There are also several side-effects associated with invasive ventilation. “If you ventilate a failing lung, or a lung with lung disease, then you administer pressurised air to the sick lung, and that may lead to a barotrauma,” continues Schneider. “Also volume trauma and ventilator-induced lung injury in general are common sideeffects of mechanical ventilation. Then there is the danger of infections, injuries of the trachea, and stenosis, as well as other smaller side-effects like disturbance of speaking and swallowing.” The Ambulung however doesn’t affect the natural function of the lung. Therefore patients who are treated with it won’t need any kind of mechnical ventilation in that specific phase of the therapy, avoiding these side-effects.

www.euresearcher.com

The blood-carrying components of the device are being developed using bio- and hemocompatible materials, which Schneider says is essential in avoiding damage of the patient’s blood during the extra-corporeal treatment. Biocompatible materials are the default option in medical device technology nowadays. When dealing with blood,

Fluorescence-staining of vital endothelial cells on the AmbuLung surface however, it’s necessary to use materials which are also haemocompatible over the long-term, in addition to their biocompatibility. This is a much greater challenge, and it’s one the project team is engaged intensively on. All the major components of the device have been designed; now prototypes are

being produced, which will soon be tested to assess their effectiveness. “The next step, which we will probably start in two or three months, will be to test the prototypes in in vivo- studies,” says Schneider. A key issue will be the durability of the disposable parts of the device, which has been designed to be used for over 60 days. Current gas exchangers typically last for around 30 days at the most before they have to be exchanged; improving the level of haemocompatibilty, and by extension their durability, depends to a large degree on the surface condition of the gas exchange membrane within the gas exchanger. “Therefore we are going to coat the AmbuLung gas exchanger membranes with endothelial cells, because this is the gold standard – it simulates nature!,” explains project manager Esther Novosel. By coating the AmbuLung gas exchanger with endothelial cells, the project aims to provide longer lasting support to the lung, aimed first and foremost at COPD patients. The disease is separated into four different stages – Gold I to Gold IV, with Gold I the mildest form and Gold IV the most severe. The device is aimed, first of all, at patients in the severe stages of COPD. “We target

27


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.