/4L_Choulot_1_

Page 1

Multipurpose Schemes MHyLab

Mini-Hydraulics Laboratory CH-1354 Montcherand

Aline Choulot Lausanne, 30 June 2005

03/08/2005

1


Table of contents I.

Drinking-water SHP (Small Hydropower Plant) II. Wastewater SHP III. How to succeed a SHP project on water networks? IV. Looking for potentials

03/08/2005

2


Different types of SHP y On water streams y On water networks: y y y y

Drinking water Runoff water wastewater (row and treated) Irrigation water

Excess pressure of adduction water networks can be used to generate energy 03/08/2005

3


Advantages of the turbining on water networks y Existing infrastructures (pipes, water chamber, head water basin‌) y No supplementary negative impacts on environment y Limited investment for a SHP setting y Simpler administrative procedures 03/08/2005

4


I. Drinking-water SHP

03/08/2005

5


Drinking water turbining y To replace pressure-breakers y Without any impacts on water quality: y Turbine stations similar to pumping ones y Precautions: y Stainless steel y No contact between water / grease (no oil-control device, centrifugal seal on the shaft, ‌)

03/08/2005

6


Pumping station

Turbining station

Inlet valve

yes

yes

Discharge regulation device

no

yes

Runner linked to a rotating shaft

yes

yes

Shaft joints Casing and runner in contact with water Roller bearings greased for life Electrical machine Electrical boxes Medium voltage / high voltage transformer Usual building materials of the hydraulic machine Automatic by pass Water access 03/08/2005

yes yes

yes yes

yes

yes

yes (engine)

yes (generator)

yes

yes

Yes, if electrical power is higher than a few tens of kW

Yes, if electrical power is higher than a few tens of kW

Cast, black steel, stainless steel, bronze

Cast, black steel, stainless steel, bronze

no

yes

Disassembly necessary

Disassembly necessary

7


La Rasse SHP (1) (St-Maurice & Evionnaz, Valais, CH) Drinking-water SHP: 1 Pelton, vertical axis 2 nozzles First starting up: Gross head: Max. discharge: Max. electrical output: Annual production: Technical design: Constructor:

03/08/2005

1997 510 m 180 l/s 755 kW 2.1 GWh/year MHyLab GASA SA (CH)

8


La Rasse SHP (2) Economics ¾ Annual production: 2.1 GWh ¾ Total investment: CHF 1'380'000.(~ euros 920'000.-) ¾ Interest rate: 4% ¾ Pay back period: ¾ civil engineering: 40 years

Hydraulic bucket's profile designed by MHyLab

03/08/2005

¾ electro mechanics: 25 years ¾ Cost price: 0.04 CHF /kWh (~ 0.027 euro /kWh)

9


La Rasse SHP (3)

A contribution to air protection y Production: 2.1 GWh /year y Reduction of 25 tonnes of CO2 emissions considering the Swiss grid production (12 tonnes /GWh) y Reduction of 1'010 tonnes of CO2 emissions considering the European grid production (480 tonnes /GWh)

03/08/2005

10


La Zour SHP (Savièse, Valais, CH) Drinking-water SHP: 1 Pelton, vertical axis, 3 nozzles First starting up: Gross head: Max. discharge: Max. electrical output: Annual production: Technical design: Constructor: 03/08/2005

2004 217 m 300 l/s 465 kW 1.8 GWh/year MHyLab GASA SA (CH) 11


II. Wastewater SHP

03/08/2005

12


Screenig & decanting station

Wastewater turbining before the treatment station Wastewater treatment station

WWTP Wastewater treatment station

Wastewater turbining after the treatment station Turbining station

WWTP

Turbining station 03/08/2005

13


SHPs before and after the WWTP: Amman city, As Samra WWTP (Jordan) (1)

Project: Suez Group & Ondéon Degrémont (Fr) Engineering: MHyLab

General view of the process area 03/08/2005

14


As Samra SHPs (2) Row-water SHP:

Treated-water SHP:

2 Pelton, vertical axis 5 nozzles

2 Francis, vertical axis

First starting up: 2006 Gross head: 103 m Max. discharge: 2.5 m3/s Max. electrical output: 770 kW Annual production: 12.3 GWh/year

03/08/2005

First starting up: 2006 Gross head: 48 m Installation discharge: 4.6 m3/s Maximal electrical output: 752 kW Annual production: 8.6 GWh/year 15


SHP before wastewater treatment plant- Ch창ble SHP (CH) (1) y Wastewater from Verbier tourist station turbined before being treated. y With a screening station before the penstock inlet.

03/08/2005

16


SHP before WWTP – Le Châble SHP (2) Row- wastewater SHP: 1 Pelton, horizontal axis, 2 nozzles First starting up: 1994 gross head: 447 m Max. discharge: 240 l/s Max. electrical output: 665 kW Annual production: 1.13 GWh/year

03/08/2005

17


SHP on treated wastewater la Douve I SHP (Leysin, Vaud, CH) (1) y Water aeration before being thrown out in the river. y Solution to the dilution problem: the treated wastewater outflow was going in a creek with a lowdischarge

03/08/2005

18


La Douve I SHP (2) (Leysin, Vaud, CH) Treated-water SHP: 1 Pelton, vertical axis, 2 nozzles First starting up: Capacity increase: Gross head: Max. discharge: Max. electrical output: Annual production: Technical design: Constructor:

03/08/2005

1989 2000 545 m 80 l/s 430 kW 2.15 GWh/year MHyLab GASA SA (CH)

19


Turbines on water networks designed with MHyLab's technique Cumulated electrical output from 1997 to 2004 (kW) 4'500

4'000

Electrical output (kW)

3'500

3'000

Switzerland: 19 installations = 9'800 kW Annual production = 18'000'000 kWh

2'500

2'000

1'500

1'000

500

0 1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

years

03/08/2005

20


III. How to succeed a SHP project on water networks

03/08/2005

21


Conditions to project's success y Good knowledge of the water networks: y Available discharges, hydrology? otherwise: daily measures on 12 months y Heads? y Existing infrastructures?

03/08/2005

y Adapted dimensioning of the penstock so as to limit head losses (penstock efficiency) y Appropriate choice of equipments thanks : y Construction simplicity y High & guaranteed efficiency y Max. reliability 22


Penstock dimensioning 20 % of diameter increase = 60 % of head losses decrease Penstock in a water network Small diameter for high head losses

Penstock for turbining

y Pressure that has to be reduced y Low cost y Setting of pressurebreakers

y Max. power for a high production y Optimal turbine operation (low pressure variation vs discharge) y High cost, but amortized by the production gain (technical & economic study)

03/08/2005

Big diameter for low head losses

23


Subsides • Site assessment: 2'000 CHF (~ 1'340 euros) for an at-least 3'000 CHF (~ 2'000 euros) study • Feasibility studies: 6'000 CHF (~ 4'000 euros) to 9'000 CHF (~ 6'000 euros) • Other example of subsides to communes: in 2005, for the 9 first answers: a site assessment of their water networks for free

03/08/2005

24


III. Looking for potentials

03/08/2005

25


MHyLab's inventory of potentials in Valais (CH) (2003)

62 studied sites y y y y

03/08/2005

55 on drinking water 5 on wastewater 2 combining drinking & treated waters 7 sites considered as variants

26


Electrical output

Electrical production

y y y y y

y y y y y

< 21 kW : 30 21 – 40 kW : 14 41 - 80 kW : 14 81 – 120 kW : 8 > 121 kW : 3

Total output : 3 MW with 2 MW with a cost lower than 0.12 CHF/kWh (0.08 euros/kWh)

03/08/2005

< 100 MWh : 101 – 300 MWh : 301 - 500 MWh : 501 – 800 MWh : > 801 MWh :

12 24 19 10 4

Total production : 14 GWh/an with 10 GWh with a cost lower than 0.12 CHF/kWh (0.08 euros/kWh)

27


Conclusions • Indigenous, renewable energy

• Positive impacts on environment

• Efficient available techniques, still improved so as notably to reduce cost

• A low grey-energy amortization

• Isolated production

• Financial opportunity for communes

• Simplified administrative procedures • Affordable equipments • Long life

• An interesting remaining potential in the industrialised countries as in the emerging ones

• Local construction 03/08/2005

28


Appendices

03/08/2005

29


Types d'exploitation y La collectivité est propriétaire et exploite la petite centrale y La collectivité est propriétaire de la petite centrale et confie son exploitation à un tiers. y Un tiers construit et exploite la centrale et la transmet à la collectivité après un certain temps y La collectivité accorde l'utilisation du droit d'eau à un tiers contre paiement d'une redevance 03/08/2005

30


Hydraulic profile

03/08/2005

31


III. Bases théoriques de la petite hydroélectricité et technique MHyLab

03/08/2005

32


MHyLab - Domaine de recherche sur les mini-turbines 1000.0

500.0 Pelton

100.0

Diagonale

10.0

Axiale

H (m)

50.0

5.0

Pico + TBCh

1.0 0.01 03/08/2005

0.05 0.10

0.50 1.00 TBCh Pico

5.00 10.00

Q (m3/s) 33


MHyLab - Domaine de recherche sur les mini-turbines 1000.0

Pelton: turbine Ă action, haute chute

500.0 Pelton

100.0

Diagonale

10.0

Axiale

H (m)

50.0

5.0

Pico + TBCh

1.0 0.01

03/08/2005

0.05 0.10

0.50 1.00 TBCh Pico

5.00 10.00

Q (m3/s)

34


MHyLab - Domaine de recherche sur les mini-turbines 1000.0

Kaplan: turbine Ă rĂŠaction, basse chute

500.0 Pelton

100.0

Diagonale

10.0

Axiale

H (m)

50.0

5.0

Pico + TBCh

1.0 0.01

03/08/2005

0.05 0.10

0.50 1.00 TBCh Pico

5.00 10.00

Q (m3/s) 35


MHyLab - Domaine de recherche sur les mini-turbines 1000.0

Kaplan: turbine Ă rĂŠaction, basse chute

500.0 Pelton

100.0

Diagonale

10.0

Axiale

H (m)

50.0

5.0

Pico + TBCh

1.0 0.01

03/08/2005

0.05 0.10

0.50 1.00 TBCh Pico

5.00 10.00

Q (m3/s) 36


Stand d'essais y Essais: y y y y

De rendement D'effort sur les pales D'emballement De cavitation

y Variantes: y y y y y y

03/08/2005

Nombre de pales Ouverture des pales Ouverture de distributeur Chute DĂŠbit Hauteur d'implantation (cavitation)

37


Projets de dĂŠveloppement Vanne-batardeau (tĂŞte d'eau)

Niveau amont constant

DZ = 2,0 m

Niveau minimum

DZ = 4,0 m

Niveau minimum

Turbine diagonale 03/08/2005

Pico turbine

PICO-TURBINE De = 300 mm 38


Puissance d'un aménagement

Puissance électrique : P = ρ ⋅ Q ⋅ gΔZ ⋅ ηglobal

Rendement : ηconduite η turbine ηgénératrice

03/08/2005

39


Turbine A8 modèle

03/08/2005

40


Turbine de St-Bueil Conduite D = 1'100

Vanne D = 1'100

Z3 - Niveau aval

2

1

Z2; p2; v2

Z1; p1; v1

De = 580

H3

Générateur N' = 1'000 t/min

Croquis de principe sans échelle. Pour le dimensionnement géométrique, voir le dessin IA-0015-0A

03/08/2005

41


Turbine de St-Bueil

03/08/2005

42


Turbines construites selon la technique MHyLab Puissances cumulées de 1997 à 2004 (kW) 10'000 9'000 8'000

Puissances (kW)

7'000 6'000

Suisse + étranger : 31 installations = 9'500 kW Production annuelle = 47'500'000 kWh

5'000 4'000 3'000 2'000 1'000 0 1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

Années

03/08/2005

43


Les différents types de turbines Turbines à réaction

Turbine Kaplan

03/08/2005

Turbine Bulbe

Turbines Francis

44


ϕ=0.380

Essai de cavitation

ψ=0.614 σ=0.50

Pale originale

03/08/2005

Pale modifiée

45


Impacts de la cavitation

03/08/2005

46


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.