ORNL-TM-1993

Page 1

HOME

WENED

ASTER

BY DTIE c

HELP

O A K RIDGE N A T I O N A L LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION for the

U.S. ATOMIC ENERGY COMMISSION ORNL- TM- 1993 c-

** q

rudd

EXPERIENCE WITH HIGH-TEMPERATURE CENTRIFUGAL PUMPS IN NUCLEAR REACTORS A N D THEIR APPLICATION TO MOLTEN-SALT THERMAL BREEDER RE ACTORS P. G. Smith

NOTICE This document contoins informotion of o preliminary nature and was prepared primarily for internal use a t the Oak Ridge Nationol Laboratory. It i s subject to revision or correction and therefore does not represent a finol report.

?%fRWUTION

OF THiS DOCUMENT. Is, UNUM\LEP,


LEGAL NOTICE T h i s report was prepared os on account of Government sponsored work. nor the Commission, nor any person octing

Neither the United Stoter,

on beholf of the Commission:

A. Makes ony warranty or representotion, expressed or implied, w i t h respect t o the occuracy. completeness, or usefulness of the informotion contained i n this report, or that the us. of any

information,

opporotus,

method, or process disclosed i n t h i s report moy not infringe

privately owned rights; or

B. Assumes any l i a b i l i t i e s w i t h respect t o the use of, or for domoges resulting from the use of any information, opporotus, method, or process disclosed i n this report.

A s used i n the obove, "person octing on beholf of the Commission"

includes any employee or

contractor of the Commission, or employee of such contractor, t o the extent that such employee or

controctor

of the Commission, or employee of such contractor prepores,

disseminates,

or

provides access to, ony information pursuont t o h i s employment or contract w i t h the Commission,

or h i s employment w i t h such contractor.


C o n t r a c t ~o

. W-7405-eng-26

REACTOR D I V I S I O f l

EXPERIENCE WITH HIGH-TEMPERATURE CENTRIFUGAL PUMPS I N NUCLEAR REACTORS AND T H E I R APPLICATION TO MOLTEN-SALT THERMAL BREEDER REACTORS P. G . Smith

SEPTEMBER 1967

OAK R I D G E NATIONAL LABORATORY O a k Ridge, Tennessee operated by UNION CARBIDE CORPORATION f o r the U .S AT3MIC ENERGY COMMISSION

i

'



iii

CORTENTS Page

....................................................... INTRODUCTION ...................................................

ABSTRACT

DESCRIPTION

.............. ...........................................

AND OPERATING EXPERIEfJCE OF THE PUMPS

Long-Shaft Pump

General D e s c r i p t i o n

..................................

Sodium Pumps f o r t h e H a l l a m Nuclear Power Reactor

....

Primary Sodium Pumps for t h e Experimental Breeder Reactor-2

........................................... Sodium Pumps for t h e Enrico Fermi Reactor ............ Development Sodium Pump f o r t h e UKAEA Prototype F a s t Reactor ........................................ Sodium Pumps for t h e Rapsodie Reactor ................ Sodium Pumps of t h e Sodium Test F a c i l i t y at LASL ..... Molten-Salt Punp Operated a t ORNL .................... Large Reactor Sodium Fump Proposed for Development b y USAEC ............................................ Short-Shaft Pump .......................................... Sodium Pumps a t t h e SRE .............................. General D e s c r i p t i o n of ORNL Pumps .................... MSRE Fuel and Coolant S a l t Pumps .....................

d

PROBLENS ANTICIPATED W I T H LARGE PUMPS FOR MOLTEN-SALT BREEDER REACTORS

...................................................... Dynamic Response of t h e Rotary Components Assembly ........ Bearings .................................................. Thermal and R a d i a t i o n Damage P r o t e c t i o n ................... S h a f t S e a l ................................................ Hydraulic Design .......................................... F a b r i c a t i o n and Assembly ..................................

I

1

2

3 3 3 11

11 15

17 18 21

24 26 26 27 30

33

33

35

36 37 37

38


iv CONTENTS (continued)

Page

................................................... ACKNOWLEDGMENT ................................................ REFERENCES .................................................... CONCLUSIONS

38

39

40


V

LIST OF FIGURES

Page Figure

1

Sodium Pumps, Hallam Nuclear Power Facility (from Ref. 5).

7

2

Primary Sodium Pump Rotary Assembly, Hallam Nuclear Power Facility (courtesy of Atomics International).

8

3

Primary Sodium Pump, Experimental Breeder Reactor-2 (from Ref. 5).

12

4

Primary Sodium Pump, Enrico Fermi Fast Reactor (from Ref. APDA-124, January 1959).

13

5

Secondary Sodium Pump, Enrico Fermi Fast Reactors, ( courtesy of Atomic Power Development Associates)

14

6

Development Sodium Pump, UKAEA Prototype Fast Reactor (from Ref. 9 ) .

16

7

Primary Pump for Rapsodie Reactor (from Ref. 4).

19

8

Primary Pump for Sodium Test Facility (LASL)

9

Molten-Salt Pump With One Molten-Salt Lubricated Bearing (ORNL)

22

10

Large Sodium Pump Concept Proposed for Development by USAEC (from Ref. 19)

25

11

Main Primary and Secondary Pumps, Sodium Reactor Experiment (from Ref. 7).

28

12

MSRE W e 1 Salt Pump (ORNL).

29

.

.

.

20


vi LIST OF TABLES

Page Table

1

L i s t of t h e Pumps and Their D i s t i n g u i s h i n g

4

Features. 2

C h a r a c t e r i s t i c s of Reactor Sodium Pumps, Long-Shaft Sump Pumps.

5

3

C h a r a c t e r i s t i c s of Development, Pumps, LongS h a f t Sump Pumps.

6

4

S o d i m Pump Operating Parameters, H a l l a m Nuclear Power F a c i l i t y .

10

5

Operating C h a r a c t e r i s t i c s , Molten-Salt Pump With One Molten-Salt Lubricated Bearing.

23

C h a r a c t e r i s t i c s of Short-Shaft Sump Pumps a t

ORNL.

31-

k d u r a n c e Operation of Short-Shaft Sump Pumps.

32

Pumps f o r Molten-Salt Breeder Reactors.

34


W

EXPERIENCE WITH HIGH-TEMPERATURE CENTRIFUGAL PUMPS I N NUCLEAR REACTORS AND THEIR APPLICATION TO MOLTEN-SALT THEFNAL BREEDER REACTORS P. G . Smith

ABSTRACT Design features, development problems, and o p e r a t i n g experience have been compiled f o r l i q u i d - m e t a l and moltens a l t c i r c u l a t i n g pumps used i n v a r i o u s n u c l e a r r e a c t o r s and t e s t f a c i l i t i e s . The compilation w a s made t o s e a r c h o u t t h e problem a r e a s and t o s e l e c t s u i t a b l e combinations of features f o r t h e c i r c u l a t i n g pumps r e q u i r e d by each of t h e t h r e e m o l t e n - s a l t systems i n t h e proposed m o l t e n - s a l t thermal b r e e d e r r e a c t o r . The pumps a r e d i v i d e d i n t o two c o n f i g u r a t i o n s : t h e " s h o r t - s h a f t pump" and t h e "longs h a f t pump." The s h o r t - s h a f t pump i s favored f o r t h e coola n t s a l t system, and t h e l o n g - s h a f t pump i s favored f o r t h e fuel-and-blanket salt systems.

INTRODUCTION

As p a r t of a continuing program f o r development of m o l t e n - s a l t r e a c t o r s , t h e Oak Ridge National Laboratory (ORNL) i s working on t h e design of m o l t e n - s a l t thermal b r e e d e r r e a c t o r s . of a 2225 M w ( t ) Molten S a l t Breeder Reacto$J2

A conceptual design (MSBR) has been p r e -

pared, and a 100-150 Mw( t ) Molten-Salt Breeder Experiment ( MsBE) has been proposed as t h e follow-on t o t h e Experiment? (MSRE). each of module.

7.5 M w ( t ) Molten-Salt Reactor

One v e r s i o n of t h e MSBR c o n s i s t s of f o u r modules

556 M w ( t ) ; and t h e MSBE c o n s i s t s of a s i n g l e , reduced-scale Each module has t h r e e m o l t e n - s a l t systems, t h e ' f u e l , b l a n k e t ,

and coolant; and each system r e q u i r e s a s a l t pump.

The f u e l and b l a n k e t

s a l t systems a r e contained i n an oven t h a t i s maintained a t temperatures varying from 1050-115OoF, and t h e y a r e s o arranged t h a t t h e d i s c h a r g e and s u c t i o n connections f o r t h e pumps are l o c a t e d w e l l below t h e oven c e i l i n g and v e r y n e a r t h e n u c l e a r core.

The coolant s a l t system, i n


2 which l i t t l e r a d i o a c t i v i t y i s expected, I s contained i n a s e p a r a t e oven t h a t i s maintained at 900-1000째F; and it i s s o arranged t h a t t h e d i s charge and s u c t i o n connections f o r t h e pump a r e l o c a t e d very near t h e ceiling. A survey of t h e experience with l a r g e pumps f o r high-temperature f l u i d s has been made t o assist i n t h e design of pumps f o r t h e molten-

salt breeder r e a c t o r s .

D e s c r i p t i o n s , c r o s s s e c t i o n drawings, and photo-

graphs, t a b l e s of pump parameters, and accounts of s i g n i f i c a n t o p e r a t i n g problems have been obtained f o r s p e c i f i c pumps of i n t e r e s t t o t h e survey

from v a r i o u s r e a c t o r i n s t a l l a t i o n s . configurations : included are:

The pumps are c l a s s i f i e d i n t o two

" s h o r t - s h a f t pump" and "long-shaft pump

."

The pumps

t h e primary and secondary system sodium pumps f o r t h e

H a l l a m Nuclear Power F a c i l i t f i

("PF'), t h e Enrico Fermi

and t h e Sodium Reactor Experiment6J7j8 (SRE); t h e primary system sodiun pumps i n t h e Experimental Breeder R e a ~ t o r - 2 ~ J(EBR-2); ~ t h e sodium pump

being developed f o r t h e Prototype F a s t R e a c t 0 2 (PFR) by t h e United Kingdom Atomic Energy Authority (UKAEA); t h e sodium pumps of t h e 10 Mw experimental c i r c u i t f o r t h e Rapsodie r e a c t o r a t t h e Cadarache i n s t a l l a t i o n i n *ance4,10~11 t h e sodium pumps of t h e 2000-Kw Sodium T e s t F a c i l i t y

a t Los Alamos S c i e n t i f i c Laboratory=> 1 3 9

l4

(LASL); t h e f u e l and coolant

s a l t pumps for t h e MSRE;15,16 o t h e r e l e v a t e d temperature pumps developed a t OFNL;~~, and t h e l a r g e sodium pump (50,000t o 109,000 gpm) proposed f o r development by t h e United States Atomic Energy Commission (USAEC) f o r sodium-cooled f a s t b r e e d e r r e a ~ t 0 r s . l ~All c e n t r i f u g a l pumps known t o have been used i n sodium-cooled and m o l t e n - s a l t n u c l e a r r e a c t o r s are included i n t h e survey. The problem a r e a s a n t i c i p a t e d f o r t h e two pump c o n f i g u r a t i o n s i n t h e m o l t e n - s a l t b r e e d e r a p p l i c a t i o n s a r e d i s c u s s e d b r i e f l y , and t e n t a t i v e conclusions a r e reached on a choice of pump c o n f i g u r a t i o n f o r each of t h e s a l t systems.

PUMP DESCRIPTIONS AND OPEFL4TING EXPERIENCE The pumps i n c l u d e d i n t h i s survey a r e d e s c r i b e d as mechanical, f r e e - s u r f a c e , c e n t r i f u g a l , v e r t i c a l - s h a f t , sump pumps.

They a r e

Y


3 W

subdivided i n t o two groups:

t h o s e t h a t have a long s h a f t with a t least

one s h a f t support b e a r i n g l o c a t e d i n t h e pumped f l u i d , and t h o s e t h a t have a s h o r t s h a f t with t h e i m p e l l e r overhung.

The f i r s t group ( h e r e -

a f t e r r e f e r r e d t o as l o n g - s h a f t pump) i n c l u d e s r e a c t o r sodium pumps i n t h e HNPF, EBR-2, and Enrico Fermi systems; t h e experimental developnent sodium pump f o r t h e PFR by WEA; t h e l a r g e sodium pump proposed f o r development by t h e USAEC; t h e sodium pumps f o r t h e Rapsodie r e a c t o r i n France; t h e sodium pumps used i n t h e Sodium T e s t F a c i l i t y at LASL; and one molten s a l t pump t h a t w a s operated a t

The second group

( h e r e a f t e r r e f e r r e d t o as s h o r t - s h a f t pump) i n c l u d e s t h e remainder of t h e l i q u i d - m e t a l and m o l t e n - s a l t pumps t h a t were developed and operated a t

ORNL, and t h e main and a u x i l i a r y sodium pumps of t h e SRE.

The d i s t i n -

g u i s h i n g f e a t u r e s of each pump are l i s t e d i n Table 1.

Long-Shaft Pump General D e s c r i p t i o n The pumps i n t h i s group have a s h a f t support a d j a c e n t t o t h e i m p e l l e r provided by a j o u r n a l b e a r i n g t h a t i s l u b r i c a t e d with t h e pumped fluid.

This permits t h e use of long s h a f t s t o s e p a r a t e t h e d r i v e motor

and i t s s e n s i t i v e e l e c t r i c a l i n s u l a t i o n and hydrocarbon l u b r i c a n t from i n t e n s e r a d i o a c t i v i t y and high-temperature.

In addition t o the distance

e f f e c t , t h e s e p a r a t i o n provides space t o accommodate r a d i a t i o n s h i e l d i n g . The pumps t h a t w e r e used t o c i r c u l a t e high-temperature sodium i n

primary and secondary n u c l e a r r e a c t o r systems a r e l i s t e d i n Table 2, w i t h p e r t i n e n t design parameters and o p e r a t i n g experience.

Table 3 provides

design and o p e r a t i o n a l information f o r development pumps.

Sodium Pumps f o r t h e H a l l a m Nuclear Power F a c i l i t y The "PF, for

a graphite-moderated, sodium-cooled r e a c t o r , designed

256 M w ( t ) , r e q u i r e d t h r e e sodium pumps i n b o t h t h e primary and

secondary systems.

The same h y d r a u l i c designs were used f o r t h e s i n g l e -

s u c t i o n r a d i a l - i m p e l l e r and vaned d i f f u s e r s i n b o t h t h e primary and secondary pumps ( F i g s . 1 and 2 ) .

A conventional o i l - l u b r i c a t e d b a l l


Table 1. List of t h e Pumps and Their Distinguishing Features Distinguishing Features

TYPepumP

Long Shaft b p s

Relatively long s h a f t , a t least one bearing l u b r i cated with pumped f l u i d .

Sodium pumps f o r t h e H a l l a m Nuclear Power F’acility

Mechanical s h a f t seal, one sodium l u b r i c a t e d hydros t a t i c bearing.

Primary sodium pumps f o r t h e Experimental Breeder Reactor --2

Hermetic containment of motor, one sodium l u b r i c a t e d h y d r o s t a t i c beaxing

Sodium pumps f o r t h e Enrico Permi Reactor

Mechanical s h a f t seal, primary pumps have two sodium l u b r i c a t e d h y d r o s t a t i c bearings, secondary pumps have only one.

Development sodium pump f o r t h e UKAEA Prototype Fast Reactor

Mechanical s h a f t seal, one sodium l u b r i c a t e d hydros t a t i c bearing.

Sodium pumps f o r t h e Rapsodie Reactor

Mechanical s h a f t seal, one sodium l u b r i c a t e d hydros t a t i c bearing.

Sodium pumps f o r t h e Sodium Test F a c i l i t y at LASL

Mechanical s h a f t seals, t h r e e sodium l u b r i c a t e d hydro2 s t a g e s ; secondary dynamic bearings. Primary pump pump 4 stages. Mechanical s h a f t seal, one molten salt l u b r i c a t e d hydrodynamic bearing.

.

-

Molten s a l t pumps operated a t ORNL Large r e a c t o r sodium pump proposed f o r development by USAEC Short Shaft pumps

-

Mechanical s h a f t seal, one sodium l u b r i c a t e d hydros t a t i c bearing. Short s h a f t , impeller overhung.

Liquid m e t a l and molten salt pumps developed a t ORNL

Mechanical s h a f t seal, i m p e l l e r overhung.

Sodium pumps f o r t h e SRF:

Shaft freeze seal, impeller overhung, s h a f t extension used t o remove motor p r o m r a d i a t i o n f i e l d .


5 U

Table 2. Characteristics of Reactor Sodium Pumps, Long Shaft Sump Pumps

Primary System Pumps Design

Number of units Capacity, g P m Dynamic head, ft Design temperature, Motok speed, rpm Motor power, hp Sealing arrangement

Centrifugal Free-surface

3

Centrifugal Free-surface 2

7200

5500

11,800

160

200

310

lo00 900

800

loo0 900

Centrifugal Free-surface

Type

OF

Material Type of speed control Manufacturer Operation Sodium temperature, O F Sodium f l o w per pump, gpm Time per PW, hr

3

350

1075 350

Mechanical Shaft seal 304 ss E d d y current coupling Byron-Jackson

Hermetically sealed Drive motor 304 ss Variable freq. and voltage Byron-Jackson

Mechanical Shaft seal 304 ss Wound rotor motor w/liquid rheostat Byron-Jackson

Centrifugal Free-surface

3

A-C linear Inductiond 1

7200

6500

13,000

170

142

loo0 900

700

100 loo0

1060

300-1000 up to 7200 20,ooos

Secondary System Pumps Design Centrifugal Free-surface

'pype

Number of units Capacity, gpm Dynamic head, ft Design temperature, Motor speed, rpm Motor power, hp Sealing arrangement

OF

Material Type of speed control Manufacturer operation Sodium temperature, O F Sodium f l o w per pump, gpm Time-per pump, hr

350 Mechanical Shaft seal 304 ss Eddy current coupling Byron-Jackson

1180 (MO set) 500 (K;set) Total metal Enclosure 304 ss Variable voltage (m set) General Electric

300-1000 up to

7200

19,000&

&rota operation per pump, facility discontinued. bTotal operation per pump as of January 18, 1967. 'Total operation per pump as of April, 1967. dmectromagnetic pump, for information only.

3

900 350 Mechanical Sh& seal 2 1/4 Cr-l$ Mo Eddy current coupling Byron-Jackson


6 Table 3.

Clm?'acteristics

Prototype Fast Reactor (UKAEA)

of Development R\mps, LOW Sbaf% S U P PUmPS 10 Mw %st Loop

Molten

Rapsodie (France)

salt pump

LPSL Sodium Test Facility (Lo6 Alamos)

(-1

Fast Breeder Reactor ( LmJ3C )

P r i m y System Pumps

mig~ Type

M e r of units Capecity, gFrm Dynamic head, it Design tcmprature, 'F Motor speed, r p Motor porer, hp Sealing m a n g e m a t Material

Type of speed control

Centrifugd free-surface 1

nm

Centrf fugd free-ourface 1 1650

150 750

105

1-00

1100 73 Mechanical shaft seal 3 4 ss ward Leonard system Hispano-Suiza

1xy,

475 Mechanical s h s i t seal 321 sa ccpmrutator ac motor w/induction regulator

_-_

Manufacturer

Centrf fbgal free-surface

1 260 50 1350 1403

---

Mechanical shaft seal Inconel

-----

Centrifusal free-surface 1 (2-stage) 230 50 850 1675 7 112 Mechanical shaft seal pl series ss Electromsgnet l c drive Byron-Jackson

Centrifbgal free-surface

Mechanical shaft seal

-------

Operation sodium up t o 1022 xxx)

l2,mb

Molt en-Salt UOO-1350 45~260 13,600'

SodiUm

Up t o 850 230 ll,920d

Secondary System Pumps

Design Centrifugal free-surface 1 1675

rype Number of units Capacity, gpn Dyaamic head, i't Design temperature, "F ~ o t a rspeed, r p Motor power, hp Sealing arrangamant

59 1200 a75 75 Mechanical shaft seal 3 6 ss Ward Leonard system Hispano-Suiza

Material ~ v p eof speed control

Manuiacturer operation

%test

published infonmtion, May 1967, Nuclear ~ i n e e r i ~ .

bTotal operation as of April

1965.

'T3tal a6 of Septeder 1967. dTotal operation, f a c i l i t y discontinued.

Oentrifbgal free-surface 1 (4-stage) 230 SLO

550

1675 10 Mechanical shaft s e a l 300 series ss ELectrodynsmic drive Byron-Jackson

---


7

-

* x

EDDY CURRENT COUPLING

T H R U S T BEARING

.-

COOLING F I N S

OPERAT I NG SODIUM L E V E L

OVERFLOW L I N E

L

H Y DROSTAT IC BEARING

W E E P HOLES

Fig. 1. Sodium Pumps, H a l l a m Nuclear Power F a c i l i t y (From Ref. 5 ) .


8

Fig. 2. Primary Sodium Pump Rotary Assembly, Iiallarri Nuclear Power Facility. (Courtesy of Atomics International).


9 bearing supported the upper end of the pump shaft. Shaft seals constrained oil from leaking into either the sodium system or the atmosphere.

A sodium-lubricated hydrostatic bearing supported the lower end of the pump shaft. The drive motor was located outside the reactor system primary containment. The shaft seals in the pumps were a part of the system containment. No shaft-annulus gas purge was used with these pumps. The pump and piping comprising a system were preheated before sodium was introduced. The preheating was accomplished with electrical resistance heaters, which were attached to the exterior of the sodium-wetted parts of the pump and piping. Each of the three primary sodium pumps operated for approximately 20,000 hr, and each of the secondary pumps operated for approximately 19,000 hr.

The speed-dependent operating parameters for both the primary

and secondary pumps are presented in Table

4.

Initially the sodium level in the primary pump casing dropped below normal when the pump was operated at flow rates above

60% of design and

with the system resistance to flow lower than the design value of 160 ft at 7200 gpm.21

Analyses and tests indicated that the flow rates of

various sodium leakages into the pump casing were less than the outflow rate, thus lowering the sodium level in the casing. The problem was resolved by plugging four of the eight balancing holes in the impeller, which reduced the flow rate out of the casing. The secondary pumps experienced binding of the rotating element caused by heavy wearing of the close running-clearance surfaces on the impeller wear rings, the sodium-lubricated bearing, and the impeller rim and casing inner diameter. The difficulty was traced to extraneous materials in the close running clearances and thermal distortion of the pump casing. The successful corrective actions that were taken included filtering the circulating sodium in a bypass loop, forced cooling the outer pump casing, and increasing the running clearances of both the upper and lower wear rings.

A prototype of the Hallam pump82was operated for 800 hr at temperatures of 350-100OoF, speeds of 227-1135 rpm, and flows up to 9000 gpm.


Table 4.

Sodium Pump Operating Parameters, HaUam Nuclear Power F a c i l i t y

Run Number Parameter

Units

L

3

L

498 2.30 (10Y 48.0 18.4 ( 1 O Y 56.4 78 72 160 35

590 2.82 (10y 68.7 32.3 (10F 97 09 127 77

416

492 2.35 (1Oy 61.6 24.2 ( 1 O Y 73.4 99 74 199 37

2

5

6

primary pump Pump speed Sodium flow Pump head Hydraulic work Pump output power Pump i n p u t power Pump e f f i c i e h c y Motor i n p u t power System e f f i c i e n c y

rPm lb/hr ft ft-lb/min hP

?

360 316 1.42 (l0)B 1.67 24.3 19.3 4.56 (lop 6.76 20.5 13.8 31 38 45 54 101

1 1 1

14

18

(lop

222

44

620 642 3.04 (10)s 3.13 (10y 76.7 81.5 38.8 (10y 42.5 (lo)” 118 129 144 158 82 82 228 242 52 53

Secondary Pump Pump speed Sodium flow Pump head Hydraulic work Pump output power Pump i n p u t power Pump e f f i c i e n c y Motor i n p u t power System e f f i c i e n c y

rpm ‘Ib/hr

ft ft-lb/min

hP hP

Q

260 462 1.30 (10)s 1.60 ( 1 O ) e 20.4 64.7 4.42 (10)” 17.3 (10Y 52.5 13.4 72 25 53 73 102 157 13 33

2.02 (10T

45.1 15.2 ( 1 O Y

46.1 64 72 179 26

508 2.48 (1O)e 68.0 28.1 (1OF 85.1 107

80 206 41

514 2.60 ( 1 O Y 73 * 2 31.7 (10y 96 .o 118 81 224 43

I-‘

0


-

.

Sodium Pumps f o r t h e Experimental Breeder Reactor-2 The EBR-2, an experimental fast breeder r e a c t o r designed f o r 62.5 M w ( t ) , uses two c e n t r i f u g a l pumps i n t h e primary sodium system ( F i g . 3) and an a c l i n e a r i n d u c t i o n pump i n t h e secondary system.

The upper end

of t h e primary pump s h a f t i s supported by t h e motor b e a r i n g s , and t h e lower end i s supported by a sodium-lubricated h y d r o s t a t i c b e a r i n g .

The

motor i s enclosed i n a hermetic v e s s e l , which i s p a r t of t h e r e a c t o r containment; and it i s p r o t e c t e d from t h e i n t r u s i o n of sodium vapor by E purge of argon gas t h a t flows downward through c l o s e running c l e a r a n c e s i n t h e pump s h a f t annulus. The primary pumps a r e l o c a t e d w i t h i n t h e primary v e s s e l and a r e preheated t o 250-275"F by t u b u l a r r e s i s t a n c e h e a t e r s a t t a c h e d t o t h e core t a n k . Each of t h e two primary sodium pumps has been operated f o r 12,000 hr.

During i n i t i a l o p e r a t i o n t h e pump s h a f t rubbed a g a i n s t t h e s h a f t

labyrinth.

This problem w a s r e s o l v e d s a t i s f a c t o r i l y by i n s t a l l i n g new

pump s h a f t s t h a t had been s u b j e c t e d t o proper s t r e s s - r e l i e f h e a t t r e a t ment.

I n a d d i t i o n , t h e l a b y r i n t h r a d i a l running c l e a r a n c e w a s i n c r e a s e d

from 0.017 t o O.129-in. One pump would not r e s t a r t i n a normal f a s h i o n following a shutdown t h a t occurred a f t e r 4400 h r o p e r a t i o n .

Manual movement of t h e s h a f t p r e -

s e n t e d a "spongy" f e e l , as might be caused by a sodium oxide b u i l d u p . The pump w a s r e s t a r t e d after t h e s h a f t - i m p e l l e r assembly w a s r a i s e d s u f f i c i e n t l y with t h e s h a f t drawbolt t o f r e e i t . A prototype

w a s operated f o r 16,000 h r during sodium pump

development t e s t s a t temperatures up t o 900째F, speeds up t o

1750 gpm,

and flows up t o 6500 gpm. Sodium R x n ~f o r t h e Enrico Fermi Reactor This fast b r e e d e r r e a c t o r designed f o r sodium pumps ( F i g . (Fig.

430 M w ( t )

requires three

4 ) i n t h e primary system and t h r e e sodium pumps

5 ) i n t h e secondary system.

Each primary pump has two sodium-

l u b r i c a t e d h y d r o s t a t i c b e a r i n g s , and each secondary pump has only one W

such b e a r i n g .

The upper end of t h e primary pump s h a f t i s a t t a c h e d t o


ORNL-DWG

67-2569

MOTOR COOLING BLOWER TOTALLY ENCLOSED RADIAL AND THRUST BEARING

+--

/

RADIAL BEARING

PR IMA R Y TANK SHIELD PLUG INSULATION PRIMARY TAN

SEAL

Oin.

11 f t

I PRIMARY TANK SODIUM LEVEL

?PUMP

ANT I -VORTEX

BAFFLE

SHAFT

/f

/

Fig. 3 . Primary Sodium Pump, Experimental Breeder Reactor-2 (From R e f . 5 ) .


13

ORNL-DWG

67-2570R

Fl

-MOTOR SHAFT

PUMP SHAFT

2 3 f t 534 in H A L F SECTION OF S H A F T S E A L

30 - in. l N L E T f

16- in. DISCHARGE

Fig. 4. Primary Sodium Pump Enrico Fermi F a s t Reactor (From R e f . APDA-124, January 19591.

V


14

ORNL-LR-DWG

I,

1

,

57847R

F 3 5 O - H P SOORPM MOTOR

AIR-COOLED EDDY -CURRENT COUPLING

SHAFT SEALS 6 BEARINGS

COOLANT HOUSING

in. OPERATING LEVEL

Fig. 5. Secondary Sodium Pump, Enrico Fermi Fast Reactors, (Courtesy of Atomic Power Developnent Associates )

.


W

which are o i l l u b r i c a t e d .

S h a f t seals a r e a p p l i e d t o t h e b e a r i i g a t t h e

upper end of t h e shaft t o c o n s t r a i n t h e l u b r i c a n t from l e a k i n g i n t o t h e atmosphere or t h e sodium system.

The r a d i a l f o r c e t h a t a c t s on t h e i m -

p e l l e r i s minimized by d i s c h a r g i n g sodium a t f o u r symmetrical p o r t s around t h e d i f f u s e r c a s i n g .

The i m p e l l e r i s of t h e mixed flow t y p e .

The pump i s d r i v e n by a 475-hp, ac cornmutator motor, which i s c o n t r c l l e d w i t h an i n d u c t i o n r e g u l a t o r and i s capable of continuous speed v e r i a t i o n between 10 and 100% of design speed. The pump t a n k and l o o p are surrounded by a mild s t e e l j a c k e t t h a t forms an annulus f o r t h e purge of h o t or c o l d a i r f o r p r e h e a t i n g o r cooling.

The j a c k e t a l s o s e r v e s as secondary containment t o provide p r o t e c -

t i o n i n t h e event of sodium leakage.

A i r i s h e a t e d by f i n n e d e l e c t r i c a l

r e s i s t a n c e h e a t e r s and i s c i r c u l a t e d through t h e annulus t o provide p r e -

heat t o 400째F. This pump has operated s a t i s f a c t o r i l y f o r 7000 h r and w a s removed from t e s t t w i c e f o r i n s p e c t i o n .

It w a s s u b j e c t e d t o 300 s t a r t s and

s t o p s and has been operated a t speeds between 10 and 100% of design v a l u e s at sodium temperatures up t o 750째F.

During o p e r a t i o n t h e o i l

leakage p a s t t h e shaft seals decreased from 1 t o

-

0.2 c$ / h r .

During disassembly some d i f f i c u l t y w a s encountered i n loosening f l a n g e b o l t s and i n s e p a r a t i n g t h e f a c e s of f l a n g e s t h a t had been immersed i n t h e sodium.

It w a s necessary t o h e a t t h e s e components above t h e m e l t -

i n g p o i n t of sodium t o perform t h e loosening and s e p a r a t i o n ; however, t h e s u r f a c e s of t h e components showed no s i g n s of d i s t r e s s .

The pumps f o r

t h e PFR w i l l be s u p p l i e d w i t h p r o v i s i o n s f o r j a c k b o l t s t o assist i n t h e s e p a r a t i o n of f l a n g e f a c e s .

Also, an i m p e l l e r w i t h double e n t r y i s being

considered t o provide a g r e a t e r margin f o r c a v i t a t i o n - f r e e o p e r a t i o n . Sodium Pum-os f o r t h e Ramodie Reactor

These pumps (see Table 2 f o r design c o n d i t i o n s ) are similar t o t h e EBR-2 and Fermi pumps i n many aspects.*

The important d i f f e r e n c e s a r e

t h e arrangement of t h e d i s c h a r g e and s u c t i o n t h a t e l i m i n a t e s t h e com-

p l e x i t y of t h e d i s c h a r g e manifolding, and t h e arrangement of t h e sodiuml u b r i c a t e d h y d r o s t a t i c b e a r i n g t h a t has t h e sodium s u p p l i e d t o pockets


18 on t h e j o u r n a l r a t h e r t h a n on t h e b e a r i n g s l e e v e . t h e pump i s shown i n F i g .

7.

A c r o s s s e c t i o n of

The s h a f t i s supported by two b e a r i n g s :

t h e s odium-lubri c a t e d b e a r i n g (mentioned above) l o c a t e d j u s t above t h e i m p e l l e r , and an upper r o l l e r bearing t h a t c o n s i s t s of two t h r u s t r a c e s placed j u s t below t h e motor coupling. with o i l .

The l a t t e r b e a r i n g i s l u b r i c a t e d

Means a r e provided f o r purging helium through a l a b y r i n t h

s e a l around t h e s h a f t t o prevent d i f f u s i o n of sodium vapor along t h e shaft.

The pump t a n k contains a s h e a t h casing of s t a i n l e s s s t e e l , through

which h o t n i t r o g e n i s c i r c u l a t e d f o r p r e h e a t i n g . The experience as of A p r i l

1965 c o n s i s t e d of approximately 12,000 h r

o p e r a t i o n each f o r t h e primary m d secondary pumps.

They have been oper-

a t e d a t temperatures up t o 1022째F and a t flows of approximately 2000 gpm. Operation with t h e secondary pump has been with NaK r a t h e r t h a n sodium. The main d i f f i c u l t i e s experienced with t h e pumps have been with d e f e c t i v e o p e r a t i o n of t h e h y d r o s t a t i c b e a r i n g s .

Adjustments have been

made i n c l e a r a n c e s and t h e length-to-diameter r a t i o .

I n t h e case of

c l e a r a n c e s , it has been necessary t o i n c r e a s e t h e c l e a r a n c e .

Other d i f -

f i c u l t i e s were experienced with d e f e c t i v e o p e r a t i o n of t h e check valve i n t h e discharge l i n e , contamination i n t h e form of oxides, and thermal d i s tortions.

Problems t h a t had t o do with v o r t e x i n g and gas entrainment were

found and s o l u t i o n s were provided during water t e s t s . Sodium Pumps of t h e 2000 kw Sodium Test F a c i l i t y a t LASL The Sodium T e s t F a c i l i t y , 1 2 which LASL operated, contained two sodium c i r c u i t s , each of which used a v e r t i c a l c e n t r i f u g a l pump ( F i g . 8) f o r c i r c u l a t i n g t h e sodium.

These puxps were two-and f o u r - s t a g e pumps with t h e

s h a f t s supported by t h r e e sodium-lubricated hydrodynamic b e a r i n g s and an o i l - l u b r i c a t e d bearing.

The s h a f t l e c g t h s a r e approximately 10 l/2 f t on

t h e primary pump and approximately

9 l/2

f t on t h e secondary pump.

The

i m p e l l e r s a r e l o c a t e d j u s t above a sodium-lubricated hydrodynamic b e a r i n g t h a t supports t h e s h a f t a t t h e lower end.

The o t h e r two sodium b e a r i n g s

a r e s e p a r a t e d by 45-in. on t h e primary and 34-in. on t h e secondary, and t h e y are above t h e i m p e l l e r s . upper end of t h e s h a f t .

The o i l - l u b r i c a t e d b e a r i n g i s n e a r t h e

It c o n s i s t s of a duplex p a i r of b a l l b e a r i n g s ,

W


V

ORNL-DWG 67-7794

MOTOR

R O L L E R BEARIN

MEC HANICAL S E A L

T H E R M A L SHIELD

1 4 f t gin.

’ H :; EATN IG

HOLLOW S H A F T

HYDROSTATIC BEARING \

IMPELLER

SODIUM LEVEL

\

CHECK FLOAT

Fig. 7 .

Primary Pump for R a p o d i e Reactor (From R e f . 4 ) .


20

ORNL-DWG 67-7792

*L.

Fig. 8.

r _-

Primary Pump f o r Sodium Test F a c i l i t y (LASL).


21 U

mounted bsck t o back.

S h a f t mechanical seals a r e used t o c o n t a i n t h e

oil. The pumps served very s a t i s f a c t o r i l y throughout t h e l i f e of t h e Tne primary pump operated f o r 11,920 h r a t temperatures up

facility.

8 5 0 " ~ ,and t h e secondary pump operzted 13,474 h r a t temperatures up t o 550째F. The pump design c h a r a c t e r i s t i c s are l i s t e d i n Table 3.

to

The o i l - l u b r i c a t e d s h a f t s e a l s performed w e l l with an o i l leakage

1-5

r a t e of

c$/day.13

After 10,700 h r of o p e r a t i o n , t h e o i l - l u b r i c a t e d

s h a f t s e a l on t h e primary pump w a s r e p l a c e d with a h e l i m - l u b r i c a t e d seal.

The helium consumption due t o leakage w a s u n s a t i s f a c t o r i l y high

a f t e r 1.50 h r of o p e r a t i o n . returned t o service.

Modifications were made and t h e s e a l w a s

The leakage r a t e w a s 10 scf/day.

A f t e r 1030 h r

o p e r a t i o n t h e s e a l f a i l e d and a g a i n leaked helium e x ~ e s s i v e 1 y . l ~The program w a s t h e n d i s c o n t i n u e d .

Molten-Salt Pump Operated a t ORNL This pump,2o F i g . 9, i s s i m i l a r t o t h e sodium pumps; b u t it i s smaller.

The pump s h a f t i s supported a t t h e lower end with a molten-

s a l t - l u b r i c a t e d hydrodynamic j o u r n a l b e a r i n g and a t t h e upper end by an o i l lubricated b a l l bearing. b e a r i n g i s gimbals mounted.

The s l e e v e of t h e m o l t e n - s a l t - l u b r i c a t e d S h a f t seals a r e a p p l i e d t o t h e upper b e a r -

i n g r e g i o n t o prevent leakage of o i l t o t h e atmosphere or t o t h e molten

salt.

The pump i s d r i v e n with an e l e c t r i c motor mounted i n t h e ambient

atmosphere.

The pump t a n k and l o o p are preheated t o 1200째F b e f o r e t h e y

a r e f i l l e d with molten s a l t .

P r e h e a t i n g i s provided by e l e c t r i c a l

r e s i s t a n c e h e a t e r s a t t a c h e d t o t h e pump t a n k and p i p i n g .

A summary of t h e o p e r a t i n g experience w i t h t h i s pump i s p r e s e n t e d i n Table

5.

It became e v i d e n t during t h e e a r l y development t e s t s t h a t

t h e l u b r i c a n t flow p a t h t o t h e b e a r i n g w a s inadequate, and t h a t t h e r i g i d b e a r i n g support used a t t h a t t i m e w a s probably being d i s t o r t e d s u f f i c i e n t l y t o cause o r t o a i d i n t h e s h a f t s e i z u r e s t h a t h a l t e d t h e first three tests.

"he l u b r i c a n t flow p a t h i n t o t h e b e a r i n g w a s improved

by removing a f l o w r e s t r i c t i o n between t h e pool of molten salt i n t h e W

pump t a n k and t h e annular e n t r a n c e t o t h e b e a r i n g .

The b e a r i n g w a s


22

- -.-- - __ ORNL-LR-DWG 417658

OIL LUBRICATE DOUBLE ROW BALL BEARING

HELIUM

PURGE IN

ACE

TYPE SEAL

SEAL LEAKAGE OUT -COOLING BARRIER

- 2 f t 3in.

Fig. 9 . Molten-Salt Pmip With One Molten-Salt Lubricated Bearing (ORNL).


Table 5 . Operating C h a r a c t e r i s t i c s Molten S a l t Pump With One Molten S a l t Lubricated Bearing, Operated a t ORNL

Test No

.

salt Temp.

( OF)

-P Shaft Speed ( rpm)

Salt (gP4

No. of Start-Stops

Test Duration

Reas on for Termination

(hd

1

1200

1200-1400

5 0-100

1

1/3

S a l t bearing s e i z u r e

2

1200

1150

50

1

0

S a l t bearing s e i z u r e

3

1200

1200

50

1

11

S a l t bearing s e i z u r e

4

1200

1400

100

2

1000

Scheduled

5 6

1200

1200

50

100

105

Scheduled

1100-i350

800-1400

454260

100

12,500

S a l t bearing showed signs of rubbing

7

1200

1200

50

1

58

Fulcrum pin worked loose i n bearing gimbals mount

8

1200

1200

Total Operation

1

1

13,616

Fulcrum pin worked loose i n bearing gimbals mount

I

Development Tests

Endurance Tests


mounted i n a gimbals arrangement t o decouple it from thermal d i s t o r t i o n s

1

t h a t might be experienced during high-temperature o p e r a t i o n . Three t e s t s were made with t h i s b e a r i n g c o n f i g u r a t i o n , i n which t h e pump was operated approximately 13,600 h r and w a s s u b j e c t e d t o 200 s t a r t s t o p operations.

The l o n g e s t run of 12,500 h r and 100 s t a r t - s t o p cycles

w a s terminated when t h e b e a r i n g showed s i g n s of s l i g h t rubbing.

During

t h e s h o r t p e r i o d between each p ~ ~ ns tpo p a:id t h e subsequent restart, t h e pump s h a f t w a s r o t a t e d by hand t o check f o r t a c t i l e s i g n s of rubbing between t h e b e a r i n g s l e e v e and j o u r n a l .

Two a d d i t i o n a l a t t e n p t s t o o p e r a t e t h e pump with new b e a r i n g s were h a l t e d by b e a r i n g seizure.

We b e l i e v e t h e s e i z u r e s r e s u l t e d from t h e

loosening of fulcrum p i n s i n t h e gimbals mount.

A r e v i s i o n t o t h e gim-

b a l s design t o prevent t h e loosening of t h e s e p i n s w i l l be t e s t e d i n t h e near f u t u r e . Large Reactor Sodium Pump Proposed f o r Development by USAEC Westinghouse and Byron-Jackson a r e developing conceptual designs f o r a sodium pump of approximately 60,000 gpm c a p a c i t y f o r t h e fast breeder r e a c t o r program under USAEC c o n t r a c t u a l arrangements.

An early

conceptual design ( F i g . 1 0 ) shows t h e e l e c t r i c d r i v e motor coupled t o t h e v e r t i c a l pump s h a f t .

The s h a f t extends downward from t h e f l o o r

l e v e l through f i v e f e e t of s h i e l d i n g i n t o t h e purrp t a n k .

The lcwer end

of t h e s h a f t i s supported i n a sodium-lubricated b e a r i n g l o c a t e d above t h e pump i m p e l l e r .

The upper end of t h e s h a f t i s supported i n an o i l -

l u b r i c e t e d b e a r i n g l o c a t e d above t h e f l o o r l e v e l .

The sodium pool i s

b l a n k e t e d with an i n e r t gas a t p r e s s u r e s ranging from

5 t o 50 p s i g .

A

s h a f t s e a l l o c a t e d c l o s e t o t h e upper b e a r i n g prevents t h e leakage of t h e b l a n k e t gas t o t h e atmosphere.

Tne pump r o t a r y element, i n c l u d i n g t h e double s u c t i o n i m p e l l e r , can be withdrawn v e r t i c a l l y from t h e pump t a n k by personnel working a t f l o o r level.

The o v e r a l l l e n g t h of t h e r o t a r y element i s 4 5 - f t p and i t s diameter

i s approximately f i v e f e e t .

B a f f l e s a r e a p p l i e d t o minimize t h e formation

of v o r t e x e s i n t h e sodium pool by t h e r o t a t i n g s h a f t and t o reduce both t h e convective h e a t t r a n s f e r and t h e d i f f u s i o n c f sodium vapor i n t h e b l a n k e t gas r e g i o n .

1


25

CONCEPTUAL DRAWING OF A 6000 HP FREE SURFACE SHAFT SEALED SODIUM PUMP

Fig. 10. Large Sodium Pump Concept Proposed for Development by

USAEC (From R e f . 19)

.


-

26 Shcrt.-Shaft Pumps -

I -

The d i s t i n g u i s h i n g f e a t u r e s of t h e s h o r t - s h a f t pump are t h e s h o r t d l s t a n c e between t h e s h a f t support b e a r i n g s and t h e overhung i m p e l l e r This punp was used i n t h e SEE and. has been a p p l i e d e x t e n s i v e l y by t h e Reactor D i v i s i o n of ORNL; however, t h e c e p a c i t i e s of t h e va.riou.s modeis

are smaller t h a n t h e requirements f o r proposed. mol-ten-salt b r e e d e r reactors.

A t ORT\TL, t h e pumps nave been used i n t h e A i r c r a f t Reactor

Experirnene4 and i n t h e MSEiE.3915

They have a l s o been used e x t e n s i v e l y

i n metall-urgica,l development programs a.nd i n h e a t transfer and h e a t exchanger development t e s t s , The SRE sodium pumps u.sed a. p e k i n g t y p e s e a l (sodium f r e e z e sea.!_) t h a t sepazated t h e sodium from t h e atmosphere; whereas, t h e ORNL piimps have t h e i m p e l l e r and v o l u t e submerged. i n a v e s s e l t h a t s w w s as a n expansion tamk i n which t h e r e i s a L i q u i d - f r e e surfa,ce

.

Oil-lubricated.

s h a f t s e a l s are used t o maintain a n i n e r t a.tmosph.e.re on t h e Iriquid-free s u r f a c e and t o contair, t h e o i l .

Sodium Pdmps f o r t h e SRE "he SRE i s a 20 M w ( t ) sodium-cooled nuel-ear power r e a c t o r w i t h h e a t t r a n s f e r and s e r v i c e systems and a steam p l a n t .

The h e a t t r a n s f e r

system c o n s i s t s of a priixary ssdium J_oop t h a t cools t h e r e a c t o r and

delivers h e a t t o a secondary sodium l o o p .

steam o p e r a t i n g system.

The second.ary l o o p hearts t h e

The pri.ma,ry sodium flow passes through t h e r e a c -

t o r and t h e r e f o r e becomes r a d i o a . c t i v e , while t h e secondary system f.s n m radioactive.

Ar, a u x i l i a r y h e a t t r a n s f e r system, comprised. of prlmary and

secondary s o d . i m loops, i s provided t o remove "a.fter glow" h e a t during r e a c t o r shutdown o r during a f a i l u r e of t h . e main system, Each of t h e f o u r h e a t t r a n s f e r I_oops contained a sodium pump, which was

3,

nadified h o t process pump s i m i l a r t o t h o s e used i n r e f i n e r i e s .

Ti?e

P r i n c i p a l modification.s c o n s i s t e d of v e r t i c a l mounting and. t h e a.ddition

cf scdium-freeze sea.& on t h e s h a f t and t h e c a s i n g .

The primary pumps

d i f f e r e d from t h e secondary p m p s i n tha,t t h e y had. t h e i r shaft, and c m i n g extended t o remove t h . e d r i v e ur,it to a safe o p e r a t i n g zone,

Th? s h a f t

v


W

f r e e z e s e a l r e p l a c e d t h e conventiond. type packing;.

I n t h i s seal, which

e a r l i e r used t e t r a l i n as a coolant and l a t e r used NaK, sodium f r e e z e s around t h e s h a f t t o provide a s e a l . b e a r i n g s t o support t h e s h a f t .

The e a r l i e r pumps used o i l - l u b r i c a t e d

I n l a t e r models t h e lower b e a r i n g s were

r e p l a c e d by g r e a s e - l u b r i c a t e d b e a r i n g s t o minimize t h e p o s s i b i l i t y of hydrocarbon leakage i n t o t h e sodium system.

Tne main system pumps a r e

shown i n Fig. 11. The % m i l i a r y p m p s izre similar, b a t t h e i r c a p a c i t y i s reduced by t h e use of reduced d i a n e t e r i m p e l l e r s .

The pumps served t o c i r c u l a t e coolant sodium i n t h e SRE f o r a cumulative p e r i o d of 37,000 h r a t coolant temperatures of 285-1030째F and a t flows of 600-1600 gpm.

The main problems encountered with t h e

pumps were a s s o c i a t e d with t h e f r e e z e s e a l s , which were r e s p o n s i b l e f o r s h a f t binding, sodium e x t r u s i o n , and gas i n l e a k a g e .

I n view of t h e s e

problems, d i f f e r e n t pump concepts were used i n t h e sodium pumps for t h e HNPF ( d i s c u s s e d i n a previous s e c t i o n ) . General D e s c r i p t i o n of ORNL Pumps The v e r t i c a l pump s h a f t ( F i g . 1 2 ) i s supported a t two p l a c e s with o i l - l u b r i c a t e d b e a r i n g s s e p a r a t e d by about 11 3/8-in. and mounted i n a b e a r i n g housing.

The i m p e l l e r , which i s mounted on t h e pump s h a f t about

26 1 / 4 - i n . below t h e lower s h a f t b e a r i n g ( i . e . , overhung), and t h e pump casing, or v o l u t e , are immersed i n a p c o l of t h e working f l u i d i n t h e pump t a n k .

The d r i v e motor i s mounted d i r e c t l y above and i n l i n e with

t h e b e a r i n g housing and i s connected t o t h e pump s h a f t through a f l e x i b l e coupling S h a f t seals are used t o minimize t h e leakage of t h e o i l t o t h e atmosphere and t o t h e pumped f l u i d and a l s o t o prevent t h e leakage af

i n e r t gas from t h e pump t a n k .

A b l a n k e t of i n e r t gas covers t h e f r e e

s u r f a c e of t h e working f l u i d i n t h e pump t a n k t o p r o t e c t t h e f l u i d from

a i r and moisture contamination.

Purge gas i s used t o scavenge seal o i l

leakage and t o remove f i s s i o n products i n r e a c t o r pump a p p l i c a t i o n s . Running c l e a r a n c e s between t h e r o t a t i n g s h a f t and i m p e l l e r and t h e i r r e s p e c t i v e matching s t a t i o n a r y s u r f a c e s accommodate r a d i a l s h a f t d e f l e c W

t i o n and axial d i f f e r e n t i a l thermal expansion.

Preheat i s provided i n


ORNL-OWG.

67.7790

MAIN SECONDARY SODIUM PUMP

MAIN PRIMARY SODIUM PUMP

Fig. 11. Main Primary Experiment (From Ref. 7).

and Secondary Pmps,

Sodium Reactor


I

Fig. 12. MSRE Fuel Salt Pump (ORNL)

ORNL-LR-DWG-56043-8R2

.


most cases with e l e c t r i c a l r e s i s t a n c e h e a t e r s which are at5ached t o t h e pump tanks and p i p i n g .

W

Also, where p o s s i b l e , t h e pumps a r e r o t a t e d t o

c i r c u l a t e helium and t o b r i n g t h e system c o n t a i n e r m a t e r i a l t o n e a r isothermal conditions. The design parameters f o r t h e s e pumps used i n t h e Reactor Division

a t ORNL are p r e s e n t e d i n Table 6.

The c a p a c i t i e s range from

5 gpm f o r

t h e e a r l y LFB pumps t o 1200 t o 1600 gpm f o r t h e l a t e r MSRE and PKP pumps, and t h e pump heads range up t o 400 f t .

The range of o p e r a t i n g temperatures

and t h e t o t a l o p e r a t i n g t i m e f o r each pump nodel are a l s o p r e s e n t e d . Table

7

provides a l i s t of t h o s e pumps t h a t were operated f o r p e r i o d s i n

excess of one y e a r .

MSRE Fuel and Coolant S a l t Pumps Both of t h e s e pumps, which are o p e r a t i n g

i n t h e E R E , are s h o r t

s h a f t sump pumps; and i n e x t e r n a l appearance t h e y are n e a r l y i d e n t i c a l . The h y d r a u l i c designs of t h e v o l u t e s and i m p e l l e r s and t h e pump o p e r a t i n g speeds d i f f e r , as s e t f o r t h i n Table

6.

The i n e r t gas i n t h e f u e l s a l t pump performs f u n c t i o n s a d d i t i o n a l t o t h a t of p r o t e c t i n g t h e s a l t from contamination.

A flow of i n e r t gas

introduced a t an i n t e r m e d i a t e p o i n t i n t h e pump s h a f t annulus ( F i g . 1 2 ) i s used (1)t o scavenge o i l t h a t l e a k s p a s t t h e lower s h a f t seal i n t o

t h e c a t c h b a s i n ( o i l i s c a r r i e d from t h e pump t o an e x t e r n a l t a n k ) ; ( 2 ) t o prevent t h e d i f f u s i o n of r a d i o a c t i v i t y from t h e pump t a n k gas space t o t h e r e g i o n of t h e lower s h a f t s e a l ; ( 3 ) t o s t r i p Xenon-135, p r i n c i p a l poison of t h e thermal neutron chain r e a c t i o n , from a s p r a y of

s a l t i n t h e pump tank; and ( 4 ) t o d i l u t e and t r a n s p o r t t h e poison t o an e x t e r n a l c h a r c o a l t r a p system. The MSRE pumps have been operated a t o t a l of more t h a n 21,000 h r i n t h e r e a c t o r and were p r e v i o u s l y s u b j e c t e d t o approximately 5000 h r o p e r a t i o n during v a r i o u s h o t shakedown t e s t s i n a p r o t o t y p e pump t e s t facility.

Also, a prototype pump w a s operated n e a r l y 9,000 h r during

v a r i o u s development t e s t s . The p r i n c i p a l d i f f i c u l t i e s t h a t were r e s o l v e d during development of t h e MSRE pumps included s h a f t s e i z u r e s and e x c e s s i v e o i l leakage

I


Table 6.

Characteristics of Short Shaft Sump Pumps a t ORNL

Process Fluid

Heada

Flowa (gpd

Speeda (rpd

DAC

N a , NaK, and Molten Salt N a , NaK, and Molten S a l t Molten S a l t

92

5

300

In-Pile Loop MF

Temp.

( OF)

No. Built

Total Hours

6000

1100-1400

46

451,000"

150

3750

100+1500

10

57,000

50

60

1450

1000-1400

Molten S a l t

10

1

3000

3 8

14,000

NaK and Molten S a l t N a and NaK

50

700

3000

1100-1500

3

41, OOOd

120

500

3600

1050-12 50

1

7,000

NaK and Molten S a l t NaK and Molten S a l t Molten S a l t Molten S a l t

400

375

3550

700-15 00

2

19,000

380

1500

3500

700-1500

4

40,000

50

1200

1150

110+1500

1

8,900

50

1200

1150

1100-1300

2

3,300

Coolante

Molten S a l t

100

850

1750

1100-1300

2

1,600

MSRE Reactor Operation (Fuel ~ u m p ) ~ MSRE Reactor Operation (Coolant PUmp)f

Molten S a l t

50

1200

1175

1200

9 ,700

800

1775

1000

11,400

Model

LFB DANA

MN

PKA PKP MSRE Prototype Fuel MSRE - mele

MSRE

-

Molten S a l t

(ft)

Total

4,000

668, ooo

a

A t design points.

bSome pumps were operated f o r periods of 15,00+20,000 C

hr.

Includes 3000 h r i n - p i l e operation. dIncludes continuous operation of 25,500 hr f o r a n s i n g l e pump, c i r c u l a t i n g molten salt. eOperatian i n Molten S a l t Pump Test F a c i l i t y , hot shakedown of 2 ea r o t a r y elements. s 'Operation of s i n g l e r o t a r y element.


32 Table 7. Ehdurance Operation of Short Shaft Sump Pumps at ORNL

Model

Number of Units

Working Fluid

Duration of Test (hr)

LFB

Molten Salt

8,800

LFB

Molten Salt

20 ,000

LFB

Molten Salt

15,ooo

m

Molten Salt

FK PK

NaK

, 16,600

Molten Salt

9,700

M S N Fuel

Molten Salt

MSRE Coolant

Molten Salt

9,700 11,400

25 500

past the lower shaft seal. Operation of the pump at off-design capacity conditions caused a purrp shaft seizure, when the shaft deflection exceeded the value of the running clearance.

The running clearances were

increased sufficiently to accommodate the off-design operating conditions. Seal performance was improved by reducing the tolerances on the concentricity and parallelism of the stater face of the shaft seal with respect to the rotor face. The final machining operation on the seal stator is performed in a lathe, using a fixture designed to attain the required concentricity and parallelism. Several incidents of plugging in the off-gas line from the fuel salt pump tank have occurred during operation of the MSRE. We believe there is a small leakage of oil into the fuel salt pump tank, and that the thermally cracked products are subsequently polymerized by radioactivity in the off-gas line, particularly in small flow-area configurations (e.g., needle valves, capillary tubes, and gas filters

.

The

spare rotary elements for the IvlSRE pumps have been modified to replace a gasketed joint with a seal weld to remove what is thought to be the major source of oil leakage into the pump tank.


33 Experience indicates that after pump development has been accomplished, the main sources of difficulty arise from failures in electrical and speed control systems and from such drive motor components as the electrical insulation system and the rotor support bearings. PROBLEMS ANTICXPATED W I T H LARGE PUMPS FOR MOLTEN-SALT BREEDEFi REACTORS

Other than the shaft length, the primary configuration difference between the short- and long-shaft pumps is the means of supporting the shaft. The short shaft is usually supported with oil-lubricated ball bearings at two places located relatively close together. A short separation distance is provided between the elevated temperature working fluid and the thermal and radiation sensitive pump components in the bearing housing and drive motor. The long shaft is supported at its lower end with a pumped fluid-lubricated bearing and at its upper end with a conventionally lubricated bearing. These two bearings are widely separated. A long separation is provided between the pumped fluid and the sensitive pump components. The two configurations differ strongly in other areas:

the dynaqic response of the individual rotating

components assembly, the kind of shaft support bearings used, and the thermal and radiation damage protection requirements. The molten-salt pump requirements presently envisioned for the MSBR and the MSBE are listed in Table 8. A comparison between the two pumps is made on the bases of their differences and the problems anticipated with their application to the pumping requirements for the molten-salt thermal breeder reactors. The principal technology problems include (1) dynamic response of the rotating components assembly, (2) bearings,

(3) thermal and radiation damage protection, (4) shaft seals, (5) hydraulic design, and (6) fabrication and assembly. Dynamic Response of the Rotating Components Assembly

The dynamic response of the rotating components assembly (which is comprised of the shaft, drive motor, impeller, and bearings) and the


34 Table

8.

Pumps f o r Molten-Salt Breeder Reactors

Fuel

Blanket

Coolant

2225 M W ~ MSBR Number r e q u i r e d

4"

4a

4"

Design temperature, "F

1300

1300

1300

Capacity, gpm

11000

2000

16000

Head, f t

1.50

80

150

Speed, rpm

1160

1160

1160

2830

2150

3400

25

8

32

990

250

1440

29

29

1.5

2 -5

2.5

5

1

1

1

1300

1300

1300

Capacity, gpm

4500

4300

Head, f t

150

540 80

Speed, rpm

1750

S p e c i f i c speed,

NS

NPSH, r e q u i r e d , f t (Net P o s i t i v e S u c t i o n Head) Impeller i n p u t power, hp b

Distance between b e a r i n g s , f t b Impeller overhang, f t

150 M W ~ MSBE Number r e q u i r e d Design temperature,

S p e c i f i c speed, N

"F

S

NPSH r e q u i r e d , f t ( N e t P o s i t i v e Suction Head) Impeller i n p u t power, hp Distance between b e a r i n g s , f t Impeller overhang, f tb a

b

1-50 1750

2730

1-750 1520

27

5

26

410

61

390

20

20

1.5

2

2

5

One pump i s r e q u i r e d f o r each of t h e f o u r modules i n t h e MSBR. b Estimated from p r e l i m i n a r y pump l a y o u t s .

2670


35 pump casings must provide vibraticn amplitudes that are sufficiently low to be tolerable to the shaft support bearings and seals, and pump structure throughout the entire range of operating speeds. In this respect the long shaft presents the more critical problem. A preliminary layout of the MSBR fuel salt pump indicates a shaft length of approximztely 35-ft for use with the oven housing concept. It may be necessary to operate this pump supercritically, i.e., at design speed above the first shaft crltical frequency, in contradistinction to the usual practice of setting the design speed at approximately threequarters of the first shaft critical. Matshematicalanalyses can now be made of the dynamic response of supercritical shafts. The usual closed solutions and graphical approximation methods for calculating shaft response have been augmented during the past few years with sophisticated computer programs. These programs have been expanded to permit computation of the dynamic response of supercritical shafts. The newness of operating long supercritical shafts and calculating their dynamic response invites, if not requires, proof-testing. Although it would be most satisfactory to simulate the full-scale supercritical shaft system, study may indicate the feasibility of proof-testing with reduced-scale models. Because of these problems, additional studies will be made of the reactor cell layout. It may be possible to reduce shaft length sufficiently to permit sub-critical operation of the MSBR fuel and blanket salt pumps. Bearinas The short-shaft pump does not require development of bearings, and its reliability is enhanced by the use of conventionally lubricated ball bearings that have good long-term life based on large statistical samplings. The long-shaft pump configuration requires a molten-salt lubricated journal bearing near the lower end of the shaft. The bearing guides the pump impeller in its casing so that there is no rubbing between these two components. The problems include the design of the bearing to produce the hydrodynamic lubricating film with molten salt, the selection of the bearing materials and their form (hard surface coating or integral body construction), the accommodation of differential thermal expansion


i f i n t e g r a l body c o n s t r u c t i o n i s used, and t h e d e s i g n of a b e a r i n g mount-

W

i n g arrangement t h a t w i l l accommodate some thermal d i s t o r t i o n between t h e pump s h a f t and c a s i n g without i n t e r f e r r i n g w i t h t h e l u b r i c a t i n g f i l m i n the b e a r i n g . The hydrodynamic design of process f l u i d l u b r i c a t e d b e a r i n g s i s on a f i r m foundation and no r e a l problem i s a n t i c i p a t e d w i t h t h i s a s p e c t of t h e design of m o l t e n - s a l t b e a r i n g s .

However, t h e r e are some un-

r e s o l v e d questions about t h e b e a r i n g materials and t h e mechanical design of t h e i r attachment t o t h e pump s t a t i o n a r y element. Although approximately 30 Hastelloy-N vs Hastelloy-N b e a r i n g s ,2

*

which r e p r e s e n t a r e l a t i v e l y s o f t - o n - s o f t combination, were s u c c e s s f u l l y o p e r a t e d i n molten s a l t , it i s b e l i e v e d t h a t a hard-on-hard combination

i s a b e t t e r choice f o r m o l t e n - s a l t systems.

The cemented c a r b i d e s ,

which u t i l i z e c o b a l t , n i c k e l or molybdenum b i n d e r , appear t o b e good candidate materials.

They m a y be used i n s o l i d body f o r m o r applied

t o t h e s o f t e r c o n t a i n e r material w i t h plasma s p r a y t e c h n i q u e s t o form a hard surface coating.

A program t o determine t h e c o m p a t i b i l i t y and t o

assess t h e a p p r o p r i a t e c h a r a c t e r i s t i c s of t h e s e l e c t e d b e a r i n g materials i n molten s a l t i s r e q u i r e d . Thermal d i s t o r t i o n of t h e pump c a s i n g can have a d e l e t e r i o u s e f f e c t on t h e alignment between j o u r n a l and b e a r i n g , which i s s o n e c e s s a r y t o t h e s a t i s f a c t o r y o p e r a t i o n of t h e m o l t e n - s a l t b e a r i n g .

It appears t h a t

a uniform temperature d i s t r i b u t i o n i n t h e c a s i n g and a b e a r i n g mounting arrangement t h a t w i l l accommodate some d i s t o r t i o n between s h a f t and c a s i n g must b e provided.

A program i s r e q u i r e d t o p r o o f - t e s t t h e full-

s c a l e b e a r i n g and mounting arrangement i n molten s a l t and t o simulate t h e a n t i c i p a t e d s t a r t - s t o p requirements, thermal c y c l i n g , and endurance conditions.

Thermal and Radiation Damage P r o t e c t i o n The r e l i a b i l i t y of a s a l t pump f o r t h e f u e l and b l a n k e t s a l t systems f o r a m o l t e n - s a l t breeder r e a c t o r i s s t r o n g l y dependent upon t h e temperat u r e and t h e r a d i a t i o n dose t o which t h e conventional l u b r i c a n t and d r i v e motor components are s u b j e c t e d .

The l o n g - s h a f t pump provides a much

W


37 g r e a t e r s e p a r a t i o n between t h e s e n s i t i v e components and t h e sources of thermal and r a d i a t i o n damage t h a n t h e s h o r t s h a f t c o n f i g u r a t i o n .

Very

low r a d i a t i o n dosage and g e n t l e temperature g r a d i e n t s a r e expected f o r t h e l o n g - s h a f t pump.

Shaft Seals A s h a f t seal i s r e q u i r e d with e i t h e r t h e long- or s h o r t - s h a f t pump t o maintain s e p a r a t i o n between t h e l u b r i c a n t i n t h e upper s h a f t b e a r i n g and t h e molten s a l t i n t h e pump t a n k .

I t s design should be as simple as

p o s s i b l e , c o n s i s t e n t with convenient replacement of t h e seal.

The an-

t i c i p a t e d problems i n c l u d e (1)t h e f a b r i c a t i o n of a bellows t o accommodate t h e r e q u i r e d pump s h a f t diameter, ( 2 ) t h e attachment of t h e r o t o r wear s u r f a c e with r e s p e c t t o t h e axis of s h a f t r o t a t i o n , ( 3 ) t h e attachment of t h e s t a t o r wear element t o t h e bellows t o o b t a i n a hermetic j o i n t ,

( 4 ) t h e assembly of t h e s t a t o r element t o provide both squareness and c o n c e n t r i c i t y of i t s wear s u r f a c e with t h e axis of s h a f t r o t a t i o n t o close tolerances.

Although s h a f t seals proportioned f o r 3-in.-diam

s h a f t s have been operated continuously f o r more t h a n 25,000 h r , a program t o produce and t o p r o o f - t e s t s e a l s f o r l a r g e r diameter pump s h a f t s i s required.

Hydraulic Design The s a l t pump c a p a c i t i e s f o r t h e MSBE and t h e MSBR range from 500 t o 16,000 gpm.

The h y d r a u l i c designs of i m p e l l e r s and d i f f u s e r s or

v o l u t e c a s i n g s i n t h i s c a p a c i t y range are a v a i l a b l e i n t h e pump i n d u s t r y Allis-Chalmers Manufacturing Company provided t h e h y d r a u l i c designs and a s s i s t e d a r e p u t a b l e founder t o produce t h e Hastelloy-N i m p e l l e r and v o l u t e c a s t i n g s f o r t h e MSRE f u e l and coolant s a l t pumps.

F a b r i c a t i o n and Assembly

Both t h e long- and s h o r t - s h a f t pumps w i l l r e q u i r e t h e f a b r i c a t i o n of l a r g e pump i m p e l l e r s and d i f f u s e r s or v o l u t e c a s i n g s from c a s t i n g s


38 or weldments.

A survey of U . S . i n d u s t r y i s being made t o determine t h e

i n f l u e n c e of t h e b e s t s t a t e - o f - t h e - a r t f a b r i c a t i o n methods and q u a l i t y c o n t r o l s on t h e design of long and l a r g e diameter s h a f t s and c a s i n g s . The r e s u l t s of t h e survey w i l l be used i n making pump conceptual l a y o u t s and w i l l be made a v a i l a b l e t o pump manufacturers.

By comparison, t h e

l o n g - s h a f t pump components w i l l r e q u i r e l a r g e and long handling equipment and i n c r e a s e d headroom i n t h e assembly and i n s t a l l a t i o n a r e a s .

CONCLUSIONS A h i s t o r y of s a t i s f a c t o r y o p e r a t i o n makes t h e s h o r t s h a f t pump v e r y a t t r a c t i v e for a p p l i c a t i o n t o m o l t e n - s a l t b r e e d e r r e a c t o r s .

However, t h e

proposed oven concept, mentioned p r e v i o u s l y f o r p r e h e a t i n g and c o n t a i n i n g t h e f u e l and b l a n k e t s a l t systems, would impose s t r i n g e n t cooling and r a d i a t i o n p r o t e c t i o n requirements f o r t h e pump.

The pump would need t o

be contained i n a r e - e n t r a n t c e l l supported from t h e c e i l i n g .

The c e l l

would r e s t r i c t a c c e s s i b i l i t y t o t h e d r i v e motor and r o t a r y element and would i n c r e a s e t h e pump i n s t a l l a t i o n problems.

The r e l i a b i l i t y of t h e

pump would depend d i r e c t l y on t h e r e l i a b i l i t y of t h e cooling system. However, t h e a p p l i c a t i o n of t h e s h o r t - s h a f t pump t o t h e f u e l and b l a n k e t s a l t systems would be a t t r a c t i v e i f t h e s a l t system components were preheated i n d i v i d u a l l y , t h e pump were provided w i t h adequate l o c a l n u c l e a r r a d i a t i o n s h i e l d i n g , and an ambient temperature below 200째F were maintained i n t h e r e a c t o r c e l l . Probably t h e most d e s i r a b l e pump c o n f i g u r a t i o n from t h e viewpoint of t h e r e a c t o r d e s i g n e r s and o p e r a t o r s i s t h e canned r o t o r pump. pump has no l i m i t a t i o n s on e i t h e r o r i e n t a t i o n or e l e v a t i o n .

This

However,

i t s a p p l i c a t i o n t o m o l t e n - s a l t r e a c t o r s would r e q u i r e t h e development

or i n v e n t i o n of a r a d i a t i o n - r e s i s t a n t , high-temperature e l e c t r i c motor. It a l s o would impose t h e n e c e s s i t y f o r long term maintenance of s a t i s f a c t o r y alignment between t h e matching s u r f a c e s of p r o c e s s - l u b r i c a t e d j o u r n a l and t h r u s t b e a r i n g s . expensive t o r e s o l v e .

These problems appear t o b e d i f f i c u l t and

I


39 W e b e l i e v e t h a t t h e l o n g - s h a f t pump i s t h e b e s t c o n f i g u r a t i o n f o r

t h e f u e l and b l a n k e t s a l t oven c e l l concept being considered f o r molten-

s a l t b r e e d e r r e a c t o r s because it provides t h e g r e a t e s t thermal and n u c l e a r r a d i a t i o n p r o t e c t i o n t o t h e d r i v e motor.

The l o c a t i o n of t h e coolant s a l t

pump n e a r t h e c e i l i n g of i t s oven and t h e a n t i c i p a t e d low l e v e l of r a d i o a c t i v i t y m&e

f e a s i b l e t h e a p p l i c a t i o n of t h e s h o r t - s h a f t pump t o t h e

coolant s a l t system.

We acknowledge g r a t e f u l l y t h e work and cooperation of t h e i n d i v i d u a l s and companies who c o n t r i b u t e d t o t h e survey and t h e c o n t r i b u t i o n s ‘of O r v i l l e Seim of Argonne National Laboratory, Norman P e t e r s of Atamic Power Development Associates, and Robert Atz of Atomics I n t e r n a t i o n a l .


40

XEFEZZKCES 1. P. R. Kasten, E. S. B e t t i s , and R. C. Robertson, Design S t u d i e s of 1000-Mw( e ) Molten-Salt Breeder Reactors, ORNL-3996,Oak Ridge National Laboratory, August 2.

1966.

H. G. MacPherscn, Molten-Salt Reactor W i l l Produce Low Cost Power, Power Engineering, ?art 1,71(I-): 28-31 ( J m u a r y 1967); P a r t 2, 7l(2 ) : 56-56 (FeSruery 1967) I

-

3.

R. C . Robertson, MSXE Design and Operations Report, P a r t 1 Description of Reactor Desig3, o~m-m2-728, Oak Ridge National Laboratory, January 1965.

4.

J. J. Morabito and H. W. Savage, N a j o r Components and Test F a c i l i t i e s f o r Sodium Systems, D e t r o i t Meetirg A p r i l 26-28, 1965, ANS-100, pp. 308-311.

5 . H. 0. Monson e t a l . , Components f o r S o d i m Reactors, 1964 Geneva Conference, ~ / 2 2 8USA, pp. 594-537.

6.

Design Modifications t o t h e February 15, 1961, p. 108.

7.

E. N. Pearson, SRE System a i d Conponents Experience - Core 11, Presented a+, t h e Sodium Conponents Development Program I n f o r m a t i m Meeting, Palo A l t o , C a l i f o r n i a , August 20-21, 1963, Atomics I n t e r n a t i0x1

SRE During FY 1960, NU-SR-5348 (Rev.)

.

8.

The E f f e c t s of Long-Term Operation 01; SRE Sodium System Components, NU-SR-11396, 50 p . , August 31, 1965.

9.

K . G . Eickhoff, J . Ailes, a i d C. BoorEan, Engineering Developxent for Sodium Systems, EN%, Lmdon Conference on Fast Breeder Reactors, May 17-19, pp. 6-9, 1966.

10. J. Baumier, Mechanical mL.nps f o r 1 and 10 Mw Test Loops, DRP/ML/FAR R/100, February 2@, 1962. 11. J. Bam-ier and H. J . G o l l i o r , Mechanical Pumps for Liquid Metals, Colloquium of t h e European S o c i e t y of Atomic Energy on Liquid Metsls, Aix-en-Provence, September 30 t o October 2, 1963.

12. L. A. Whinery, 2000-Kw Sodium T e s t F a c i l i t y P r o j e c t Descript*ion and Progress Report, LAMS-2541, 3m-e 30, 1958 through September 30,

1959 * 13. Q u a r t e r l y S t a t u s Progress Report on Lanpre Program f o r P e r i d Endicg August 20, 1961, LAMS-2620, pp. 23-24, September 29, 1961.


41 W

14. Quarterly Status Progress Report on Lampre Program for Period kding November 20, 1961, LAMS-2647,pp. 12-13, December 27, 1961. 15. P. G. Smith and L. V. Wilson, Development of an Elevated-Temperature Centrifugal Pump for a Molten-Salt Nuclear Reactor, ASMF: Paper 65 WA/FE-27 11 p., December 1965.

16. Oak Ridge Na,tional Laborztory, MSRP Semiann Progr Rept . July 31, 1964, USAEC Report Ox~(;i,-3708, pp. 147-167. e

17. H. W. Savage and A. G. Grindell, F’umps for High-Temperature Liquid Systems, Space Nuclear Conference, Gatlinburg, Tennessee, American Rocket Society, 16 p., May 3-5.

18. A. G. Grindell, W. F. Boudreau, and H. W. Savage, Development of Centrifugal Pumps for Operation with Liquid Metals and Molten Salts at l100-1500°F, Nuclear Science and Engineering, 7(1): 83-91 (January 1960).

19. Sodium August

F’ump Development and Pump Test Facility Design, WCAP-2347,

1963 .

20. P. G. Smith, High-Temperature Molten-Salt Lubricated Hydrodynamic Journal Bearings, ASLE Trans., 4( 2): 263-274 (November 1961).

21. R. W. Atz, Operating Experience with Heat Transfer System Pumps at the Hallam Nuclear Power Facility, NAA-SR-9717, June 15, 1964. 22. R. W. Atz, Performance of HNPF Prototype Free-Surface Sodium Pump, NAA-SR-4336, 26 p , June 1960.

.

23. 0. S. Seim and R. A. Jaross, Characteristics and Performance of 5000 gpm A.C. Linear Induction and Mechanical Centrifugal Sodium Pumps, A/CONF 15/P/2158, USA, June 1958.

24. H. W. Savage, G. D. Whitman, W. G. Cobb, and W. B. McDonald, Components of the Fused-Salt and Sodium Circuits of the Aircraft Reactor Experiment, ORNL-2348, Oak Ridge National Laboratory, September 1958.



43

INTERNAL DISTRIBUTION 1. R . K. Adams 2 . G. M. Adamson 3. R . G o A f f e l 4. L. G. Alexander 5 . R. F. Apple 6. C. F. Baes 7. J. M. Baker 8. S. J. B a l l 9. H. F. Bauman 10. S . E. B e a l l 11. M. Bender 1 2 . E. S . B e t t i s l 3 * F. F. Blankenship 14. R. E. Blanco 15. J. 0. Blomeke 16. R . Blumberg 17. E. G . Bohlmann 18. C. J. Borkowski 19. G . E. Boyd 20. J. Braunstein 21. M. A. Bredig 22. R. B. Briggs 23. H. R. Bronstein 24. G. D. Brunton 25. D. A. Canonico 26. S. Cantor 27. W. L. Carter 28. G . I. Cathers 29. J . M. Chandler 30. E. L . Compere 31. W. H . Cook 32. L. T. Corbin 33. J. L. Crowley 34. F. L. C u l l e r 35. J. M. Dale 36. D. G . Davis 37. S . J . D i t t o 38. A. S . Dworkin 39. J . R. Engel 40. E. P. Epler 41. D. E. Ferguson 42. L. M. F e r r i s 43. A. P. Fraas 44. H. A. Friedman 45. J. H. Frye, Jr. 46. C. 3 . Gabbard

47.

R. B. Gallaher

48.

H. E. Goeller

49.

W. R. Grimes

50.

.A. G . G r i n d e l l R. H . Guymon B. A. Hannaford P. H. Harley D . G. Harman C . S. Harrill P. N . Haubenreich F. A. Heddleson P. G . Herndon J . R. Hightower H. W. Hoffman R. W. Horton T. L. Hudson H . Inouye W. H . Jordan P. R . Kasten R . J. Ked1 M. T. Kelley M. J . Kelly C. R . Kennedy T. W . K e r l i n H. T . K e r r S . S . Kirslis A. I . Krakoviak J. W. Krewson C . E. Lamb J. A. Lane R . B . Lindauer A. P. Litman M. I . Lundin R. N. Lyon H . G . MacPherson R. E. MacPherson C . D. Martin C. E. Mathews R . W. McClung H. E. McCoy H . F. McDuffie C. K . McGlothlan C. J . McHargue L . E. McNeese A. S . Meyer R. L. Moore J. P. Nichols E. L. Nichclson L. C. Oakes P. P a t r i a r c a

51. 52.

53. 54. 55. 56. 57. 58. 59. 60.

61. 62.

63. 64. 65. 66. 67. 68. 69. 70.

71. 72.

73. 74. 75. 76. 77. 78. 79. 80.

81. 82.

83. 84. 85. 86. 87. 88. 89. 90.

91. 92.

93. 94.

95. 96.


44 INTERNAL DIS’~~~IB’JTION (continued)

97 98 99 100. 101. 102* 103. 104-105. 106. 107. 100* log. 110. 111. 13.2. 113. 114. 115 116. 117.

118-129. 130 131.

A. M. Perry H. B. Piper B. E. Prince J. L. Redford M. Richardson R. C. Robertson H. C. Roller M. W. Rosenthal H. C. Savage C. E, S c h i l l i n g Dunlap Scott H. E. Seagren W. F. Schaffer J. H.’ Shaffer M. J. Skinner G. M. Slaughter A . N. Smith F. J. Smith G. P. Smith 0. L. Smith P. G. Smith W. F. Spencer I. Spiewak

132 133 134 135

0

136 137 138 139

Ro 3. 5. E, R.

J.

C. 3, 140. A. 141.. J. 142. W. 0

143. K.

144.

M. 145. J. i46. L.

147

G.

C. S t e f f y

H. Stone R. Tallackson H. Taylor E. Thorn S. Watson F. Weaver H. Webster M. Weinberg R. Weir J. Werner W. West E, Whatley C. White V. Wilson Young

148. He C * YOU= 149. GRNL Patent Office 150-151. Central Research Library (CRL) 152-153. Document Reference Section (DRS) 154-206 Laboratory Records (LRD) 207. Laboratory Records Record Copy (LRD-RC)

-

DISTRIBIFTION

208. 209. 210. 211. 23.2-213 214 215. 216. 217 e 218. 219. 220. 221. 222-223. 224. 225. 226. 227 228. 229. 230. 231. 232 233-247. 0

e

R. W. Atz, Atomics International, Canoga Park, California Los Angeles Byron-Jackson Pumps, Inc B.Cametti, Westinghouse, Cheswick, Pennsylvania E. J. Cattabiani, Westinghouse, Cheswick, Pennsylvania D. F, Cope, AEC-ORNL R.D.T. S i t e Office J. W. Crawford, AEC-RDT, Washington \ P. W. Curwen, Mechanical Technology Incorporated, Latham, N. Y. C. B. Deering, BEC-OR3 E. G. Eickhoff, UKUA A. Giambusso, AEC-Washington W. J. Larkin, AEC-OR0 Liquid Metal Infomation Center, Atomics I n t e r n a t i o n a l C. L. Matthews, AEC-OR0 T, W, McIntosh, Atomic Energy Commission, Washington C. E. Miller, Jr., Atomic Energy Commission, Washiwon N. T. Peters, Atomic Power Developnent Associates B. T, Resnich, Atomic Energy Commission, Washington H. M. Roth, AEC-OR0 0. S. S e d , Argonne National Laboratory Milton Shaw, Atomic Energy Commission, Washington W e L. Smalley, AEC-OR0 Beno S t e n l i c h t , Mechanical Technology, Incorporated, Latham, N. Y. R. F. Sweek, AEC-Washington Division of Technical I n f o m a t ion Extension (DTIE)


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.