Cap´ıtulo 3
Modelagem ARIMA 3.1
Introdu¸ c˜ ao
Neste cap´ıtulo trataremos de modelar s´eries temporais por meio de processos auto-regressivos integrados e de m´edias m´oveis, abreviadamente, ARIMA. Como vimos no Cap´ıtulo 2, um modelo ARMA (p,q) ´e dado pela equa¸c˜ao de diferen¸cas
Xt − µ = φ1 (Xt−1 − µ) + . . . + φp (Xt−p − µ) + εt − θ1 εt−1 − . . . − θq εt−q ,
(3.1)
onde εt ∼ RB(0, σε2 ). Com os operadores auto-regressivos e de m´edia m´oveis definidos anteriormente (veja as express˜oes (2.25) e (2.42)), podemos escrever ˜ t = θ(B)εt , φ(B)X
(3.2)
˜ t = Xt − µ. Quando µ 6= 0, o modelo pode ser escrito com X Xt = θ0 + φ1 Xt−1 + . . . + φp Xt−p + εt − θ1 εt−1 − . . . − θq εt−q , onde θ0 = µ(1 − φ1 − . . . − φp ). No que segue, iremos supor que µ = 0, a menos que se fa¸ca men¸c˜ao em contr´ario. Um processo {Xt , t ∈ Z} segue um modelo ARIMA(p,d,q) se ∆d Xt seguir um modelo ARMA(p,q), ou seja, temos φ(B)∆d Xt = θ(B)εt .
(3.3)
No estabelecimento de um modelo ARIMA para uma s´erie temporal h´a trˆes est´agios a considerar: (i) identifica¸c˜ao; (ii) estima¸c˜ao; 63