Algebra

Page 286

270

Cap´ıtulo 15. La teor´ıa de Galois

Ejercicio: Probar que ωa ωb es una ra´ız m-sima primitiva de la unidad. Deducir directamente la primera igualdad del teorema anterior. Ejercicio: Probar que si m es impar entonces Q(ωm ) = Q(ω2m ).

Con los resultados de este libro no estamos en condiciones de profundizar en los cuerpos ciclot´ omicos arbitrarios. En su lugar vamos a usar la teor´ıa de Galois para comprender mejor los cuerpos ciclot´ omicos de orden primo. Si p es un n´ umero primo el grupo de las ra´ıces p-´esimas primitivas de la unidad sobre Q tiene orden p, luego todas las ra´ıces distintas de 1 son primitivas (no hay m´ as ´ordenes posibles que 1 y p). Si ω es una ra´ız p-´esima primitiva, el grado de la extensi´ on Q(ω)/Q es p − 1 y el grupo G(Q(ω)/Q) es isomorfo a Up , que c´ıclico. De acuerdo con la prueba de 15.12, cada clase [m] ∈ Up se corresponde con el automorfismo que env´ıa ω a ω m . De este modo, si m es una ra´ız primitiva de la unidad m´ odulo p, es decir, si [m] es un generador de Up , entonces el automorfismo σ que cumple σ(ω) = ω m es un generador de G(Q(ω)/Q). Como consecuencia del teorema de Galois, la extensi´ on Q(ω)/Q tiene tantos cuerpos intermedios como divisores tiene p −1. Vamos a describir estos cuerpos. En primer lugar notemos que si un automorfismo fija a un elemento, tambi´en ° ¢ lo fijan sus potencias, luego el cuerpo F hσi fijado por un grupo c´ıclico de automorfismos coincide con el conjunto de los elementos fijados por σ, por lo que escribiremos simplemente F (σ). Sea σ un generador de G(Q(ω)/Q). Para cada divisor m de p − 1, el automorfismo σ m tiene orden (p − 1)/m, luego |Q(ω) : F (σ m )| = o(σ m ) = (p − 1)/m y por lo tanto |F (σ m ) : Q| = m. Llamemos d = (p − 1)/m. Antes de seguir nuestro an´ alisis en general conviene poner un ejemplo para imaginarnos la situaci´ on. Tomemos p = 13, m = 3, d= 4. Vamos a obtener el cuerpo intermedio de grado 3 sobre Q. En primer lugar necesitamos un generador del grupo de Galois. Como 2 es una ra´ız primitiva m´ odulo 13, nos sirve el automorfismo σ que cumple σ(ω) = ω 2 . Nuestro cuerpo es el fijado por σ 3 , que est´ a determinado por σ 3 (ω) = ω 8 . Un elemento cualquiera de Q(ω) es de la forma: a + bω + cω 2 + dω 3 + eω 4 + f ω 5 + gω 6 + hω 7 + iω 8 + jω 9 + kω 10 + lω 11 + mω 12 , donde es importante tener presente que la expresi´ on no es u ´nica, sino que podemos sumar una misma cantidad a todos lo coeficientes sin alterar el elemento (ver el cap´ıtulo VIII). Ahora bien, si dos elementos de esta forma tienen igual un coeficiente, ser´ an iguales si y s´ olo si tienen los mismos coeficientes. Al aplicar σ 3 a nuestro elemento obtenemos lo siguiente: a + bω 8 + cω 3 + dω 11 + eω 6 + f ω + gω 9 + hω 4 + iω 12 + jω 7 + kω 2 + lω 10 + mω 5 . El elemento estar´ a en F (σ 3 ) si y s´ olo si esta expresi´ on coincide con la primera. Como el t´ermino independiente es a en ambos casos, todos los coeficientes deben coincidir. Esto ocurre si y s´ olo si b = f = m = i, c = k = l = d, e = h = j = g, es decir, si y s´ olo si nuestro elemento es de la forma a + u(ω + ω 5 + ω 8 + ω 12 ) + v(ω 2 + ω 3 + ω 10 + ω 11 ) + w(ω 4 + ω 6 + ω 7 + ω 8 ).


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.