Smart Textiles

Page 235

230

D.V. Bayramol et al.

104. Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., Hu, A.: Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 122 (2015) 105. Qin, X.H., Wang, S.Y.: Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 102(2), 1285–1290 (2006) 106. Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006) 107. Heikkilä, P., Taipale, A., Lehtimäki, M., Harlin, A.: Electrospinning of polyamides with different chain compositions for filtration application. Polym. Eng. Sci. 48(6), 1168–1176 (2008) 108. Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J.: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12), 2077–2082 (2003) 109. Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005) 110. Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007) 111. Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008) 112. Chang, C., Tran, V.H., Wang, J., Fuh, Y.K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010) 113. Laudenslager, M.J., Scheffler, R.H., Sigmund, W.M.: Electrospun materials for energy harvesting, conversion, and storage: a review. Pure Appl. Chem. 82(11), 2137–2156 (2010) 114. Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6(7), 6231–6235 (2012) 115. Fang, J., Niu, H., Wang, H., Wang, X., Lin, T.: Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6(7), 2196–2202 (2013) 116. Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007) 117. Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008) 118. Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9(3), 1201–1205 (2009) 119. Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009) 120. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010) 121. Chang, J., Lin, L.: Large array electrospun pvdf nanogenerators on a flexible substrate. In: 2011 16th International, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747–750. IEEE (2011) 122. Fuh, Y.K., Ye, J.C., Chen, P.C., Huang, Z.M.: A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers. J. Mater. Chem. A 2(38), 16101–16106 (2014) 123. Fang, J., Wang, X., Lin, T.: Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011) 124. Zheng, J., He, A., Li, J., Han, C.C.: Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol. Rapid Commun. 28(22), 2159–2162 (2007) 125. Ribeiro, C., Sencadas, V., Ribelles, J.L.G., Lanceros-Méndez, S.: Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater. 8(3), 274–287 (2010) 126. Cui, N., Wu, W., Zhao, Y., Bai, S., Meng, L., Qin, Y., Wang, Z.L.: Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12(7), 3701–3705 (2012)


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.