Space Grid Structures

Page 92

Case studies

81

5.35 Part assembled roof grid of FFV Aerotech Maintenance Hangar at Stansted Airport (Photograph courtesy L. A. Kubik)

20 m above ground at their highest point, however, keeping the overall height to a minimum was a major architectural design consideration. In recognition of the innovative design of the hangar and its use of the CUBIC Space Frame, the project was honoured with the Supreme Award of the British Construction Industry Awards 1989 and also gained a Steel Design Award in 1990. Completed: 1988 Architect: Faulks, Perry, Culley and Rech Engineer: Sir Frederick Snow and Partners and Burks Green and Partners (hangar steelwork and CUBIC Space Frame) Consultant: M. Leszek Kubik Main contractor: Costain Construction Ltd Steelwork and space frame fabricator: A. R. Hunt Erector: Butler & George

Sant Jordi Sports Palace, Barcelona, Spain One of the most frequent criticisms that is levelled at space grids, is that they are suitable for flat roofs covering rectilinear floor plans but that they become uneconomic when used for more complicated roof forms or building plans. This argument is powerfully and elegantly refuted by the Palau Sant Jordi, or Sant Jordi Sports Palace, in Barcelona (Figure 5.36). Following an international design competition held in 1983, Arata Isozaki

(architect) and Mamoru Kawaguchi (engineer) were commissioned to design the 15 000-seat Sports Palace which was to be constructed as the main indoor arena for the 1992 Barcelona Olympiad. Conceptually, the designers wanted to capture the technology of the age and for this reason chose a ‘mass-produced’ system but in the modern sense where robotics, CAD, computer-aided manufacture (CAM) and NC techniques allow ‘mass-production’ of small quantities with many variants. Hence, a ‘mass-produced’ space truss was adopted but for a reasonably complex form that required the modern technology for its economic fabrication and erection.13,14 All four sides of the stadium are curved in plan and the cross-section is arched along both major axes (see Figures 5.37 and 5.38(a) and (b)). There is a central zone that is built to a slightly different curvature and also tapers slightly in the direction of the long axis of the arena. This area is surrounded by a continuous skylight and is also perforated with smaller domed skylights on a pattern conforming to the space grid upper chord configuration. In contrast to the profiled-metal decking that is more commonly used to clad space grids, the roof is finished with two alternative materials – black ceramic tiles and zinc metal sheeting.15 The impression generated is that of a protective shell, shielding the athletes and spectators from the heat of the Barcelona summer sun. The space grid roof has maximum plan dimensions of 128 by 106 m within which the central zone, of different curvature, is approximately 80 by 60 metres. In both the


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.