DCD>Magazine Issue 29 - CERN New Data Centers

Page 39

Power + Cooling

Source: The University of Texas

The restless inventor The father of the lithium-ion battery believes he has invented a worthy successor. Others aren't so sure. Sebastian Moss reports

I

'm living on borrowed time,” John B. Goodenough told DCD. “So we have to live day by day. We never know what's going to happen.” At 96, the inventor of the lithium-ion battery could be forgiven for taking a break and enjoying the fruits of his labor. But he is still working, still trying to create a battery that will solve the crisis he first saw coming nearly 50 years ago. To understand Goodenough’s quest to build the ultimate battery, one must revisit key points in his life, that worked together to push him towards this goal. The first came at the start of World War II, when Goodenough was studying classics and mathematics at Yale. Knowing he would be spending some time in the Army, the young academic was at a loss over what to do in life. Then he read Alfred North Whitehead's

seminal book Science and the Modern World, which analyzed the impact of scientific discovery on different historical periods. “I just had a feeling that what I was supposed to do was science,” Goodenough said. “I had no money - how was I going to go to graduate school? I didn't have the vaguest idea. But I knew if I had the opportunity I should go study physics.” When the war ended, he was given his chance with President Roosevelt's G.I. Bill which granted university stipends to help veterans readjust. “I was very lucky,” he acknowledged. After studying solid-state physics under Professor Clarence Zener, Goodenough was given a job at the Lincoln Laboratory of the Massachusetts Institute of Technology (MIT). There, he helped develop the SemiAutomatic Ground Environment (SAGE) system for air defense. Not only was he part of a team responsible for inventing random access memory (RAM), Lincoln also served as the next pivotal moment in his life. “It was interdisciplinary, so physics, chemistry and engineering were all involved together,” Goodenough said. “And that gave me the opportunity to really move in the direction of materials science and engineering. It's that opportunity to work

Sebastian Moss Senior Reporter

with chemists, physicists and engineers that really matured and developed me.” Unfortunately, after a few more years studying magnetism and ceramics, outside forces once again conspired to change the course of his life. In 1969, Congress passed Section 203, an amendment put forward by Senator Mansfield that forbade the use of military funds for research on projects that were not related to specific military functions. “There came a moment where they said ‘well you're in a laboratory that is sponsored by the Air Force, and the basic research that you're doing is not targeted to a mission. You can't do it anymore.’” This proved to be one of the most fortuitous lay-offs in modern history. After spending a little over a year working on a traveling-wave amplifier, “the energy crisis came.” Seeing people lined up at gas stations, Goodenough knew he had to work on something related to energy. “So that's why I turned to studying energy materials and then I was invited to go to Oxford. And I officially became a chemist at that point.” The 1970s energy crisis also inspired others. Early in the decade, Stan Whittingham discovered a way to diffuse lithium ions into

Issue 29 • August/September 2018 39


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.