Issuu on Google+

SEÑALES INALAMBRICAS Conceptos básicos de Señal En la presente seccion se pretende ofrecer una visión de los conceptos básicos relacionados con la señal wireless, tales como la claridad, enfoque, transmisión, etc de la señal. 1-Factores que influyen la claridad de la señal La claridad de señal es la clave para la realización de una comunicación Wireless. Algunos de los factores que afectan la claridad son: Potencia de la señal: Obviamente, una señal fuerte permite una mejor recepción en largas distancias. La normativa en España para el nivel de señal en transmisión Wireless es de 100mW para la frecuencia de 2,4GHz y de 1W para la frecuencia de 5,4GHz. Distancia: La potencia de la señal de radiofrecuencia (RF) disminuye con la distancia. Además se pueden sumar interferencias no deseadas con lo que se consiguen distancias menores. Como veremos más adelante, la señal puede ser modificada de diferentes formas para adecuarla a la distancia que tenga que recorrer (tipos de antenas). Interferencias: Los factores atmosféricos, como la nieve, la lluvia o el granizo, pueden interferir en la señal. Es un dato a tener en cuenta cuando se quieren realizar enlaces wireless en exteriores. Normalmente las interferencias de RF son causadas por aparatos que están emitendo cerca, en la misma banda y mismo canal que nosotros. También se consideran interferencias a las transmisiónes wifi que esten en el mismo canal que nuestra señal, por lo que siempre es conveniente utilizar el canal menos utilizado. Incluso otros sistemas de RF como puede ser microondas o cualquier otro sistema también puede interferir y degradar el nivel de nuestra señal. Línea de visión: La señal necesita visión directa para realizar bien la comunicación. Si hay obstáculos en la línea de visión, no se podrá realizar la conexión. La transmisión Wifi está sólo es válida para enlaces con visión directa. Aunque en interiores es posible que aprovechando los rebotes de la señal en paredes u otros objetos, pero en ningún caso se ofrece una garantia de señal al traspasar un objeto por fino que pueda ser este, se podría conseguir un enlace wireless.


2-Transmisión de la señal Las ondas de señal de radio viajan como las vibraciones del agua de una piscina cuando se lanza un objeto. La potencia de la señal disminuye a medida que la señal se aleja de la primera onda. Una antena direccional refleja la señal en una dirección y crea un foco en forma de cono con gran potencia. La señal no se propagada a partes iguales por todo el foco. Igual que la luz es enfocada con más intensidad con una lupa, la señal de RF es más fuerte con un área más estrecha y central. Nos referimos al área donde la señal es más fuerte como el centro del lóbulo. Siempre siendo más debil en los extremos. El ancho del haz de la señal de RF depende de cómo la antena forma la señal (tipo de antena) y la distancia de la fuente de la señal. La señal se atenúa gradualmente en el borde del cono y no es aconsejable medir la señal desde el borde. La amplitud del haz (no el nivel de potencia) de señal aumenta con la distancia, si se desea medir la anchura de la señal en metros, no se podrá determinar hasta que no se sepa a qué distancia estará. La potencia de la señal se mide en decibelios (dB). El número de decibelios indica la distancia de la señal respecto a su punto central, es decir el alcance de esta. Las ondas pueden rebotar en algunos objetos que encuentren por su camino, en este caso las ondas se desfasan con mayor o menor grado en función del material en el que reboten y su Angulo de incisión. Una vez una señal es rebotada/desfasada puede ser recuperada o no en función del desfase de la misma. Normalmente si los desfases son muy pequeños, casi despreciables se puede recuperar la señal. Existen tipos de antenas que emiten con una polarización concreta, horizontal, vertical, circular y la novedad que es multipolaridad que recupera las señales desfasadas. Se ha de resaltar que si se utiliza en un emisor una antena con polarización horizontal, es lógico, que en la recepción se utilice una antena con la misma polarización, ya que en caso contrario no se recuperaría la señal debido al desfase natural que hay entre las dos antenas (90 grados). 3-Enfocar la señal Si la distancia de transmisión aumenta, es necesario compensar la distancia seleccionando una antena con una transmisión más enfocada y un foco más estrecho, es decir una antena directiva. Algunos de los beneficios de utilizar antenas directivas es que al tener un foco más estrecho, las señales interferentes se minimizan a aquellas que pasen y coincidan en el haz de la misma. En casos anteriores, al tener un haz más ancho la posibilidad de encontrar interferencias era superior. Para conseguir un enlace entre dos puntos, lo más conveniente es que los dos lóbulos principales del emisor y el receptor coincidan en al menos un punto, no es necesario que el lóbulo de cada uno de los extremos este superpuesto con el otro. Pero cuanto más superposición exista entre los lóbulos del emisor y el receptor mejor será la señal en el enlace, por lo que es aconsejable que siempre estén superpuestos al 100%. Por ejemplo: Para hacer un enlace de 1km, se tendría que poner una antena en el emisor y en el receptor que tengan un alcance de 1km, y no poner dos que tuviesen un alcance de 600 metros que solo coincidirían sus


lóbulos en 200 metros. Cuando se quieren enlazar grandes distancias, incluso una antena muy direccional puede tener un gran cono de cobertura. Por ejemplo, con algunas parabólicas de mucha ganancia se pueden conseguir distancias de hasta 20km aproximadamente, y a estas distancias el haz de la señal habrá abierto o aumentado mucho y se puede ver afectada por interferencias. 4-Línea de visión (LOS) El éxito de un enlace de RF depende de la línea de visión. Una línea de visión sin obstáculos se llama “free space path” (Camino con espacio libre). Sin línea de visión directa, tal y como se ha comentado con anterioridad, no es posible realizar un enlace vía Wifi. Un obstáculo en la línea de visión del enlace reduce o elimina totalmente la señal. La desviación de la señal al pasar alrededor de un obstáculo se llama difracción. Una reducción de la potencia de la señal es conocida como atenuación. Si una antena apunta hacia una ventana de cristal, el cristal debido a su coeficiente de difracción atenuará en gran medida la señal. Algunos tipos de cristal reflectante ofrecen un nivel de atenuación. La señal que pasa por una construcción de madera o un bosque también será atenuada. Las hojas mojadas pueden afectar substancialmente en la señal. También se ha de comentar, que no siempre es suficiente una visión directa entre dos puntos para realizar un enlace wireless. Ya que ha de tener un campo de visión lo suficientemente ancho como para que pase un cierto porcentaje del haz del emisor y el receptor. Existen las zonas de Fresnel que definen las anchuras y alturas necesarias para tener una línea de visión suficiente para realizar los enlaces, pero no entraremos a detallarla en estos conceptos básicos. 5-Posición estable de la antena Para obtener un óptimo rendimiento, se debe ajustar las antenas con la máxima precisión posible. Para asegurar un buen alineamiento de las antenas, es preciso mantenerlas en una posición estable y rígida. Esto es difícil de conseguir en exteriores y sobre todo cuando se utilizan antenas parabólicas de plato rígido montadas en mástiles flexibles, ya que el viento hará mover la antena. Hay que asegurarse que el mástil donde se instala sea rígido. Para instalaciones interiores este fenómeno es despreciable. En Conclusión la claridad en la señal RF es un factor muy importante para obtener un buen rendimiento en el enlace Wireless. Teniendo en cuenta que resulta bastante difícil mantener una señal clara cuando se aumenta la distancia debido a todo lo explicado en el presente tutorial. Para conseguir una buena señal en distancias largas,


se debe mantener el enlace RF libre de obstáculos, transmitir en los canales menos utilizados y utilizar antenas lo más directivas posibles para obtener menores interferencias.

Red inalámbrica El término red inalámbrica (Wireless network en inglés) es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos. Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho más exigente y robusta para evitar a los intrusos. En la actualidad las redes inalámbricas son una de las tecnologías más prometedoras.

Categorías Existen dos categorías de las redes inalámbricas. 1. Larga distancia: estas son utilizadas para distancias grandes como puede ser otra ciudad u otro país. 2. Corta distancia: son utilizadas para un mismo edificio o en varios edificios cercanos no muy retirados.

Tipos Según Cobertura y según estándares. Según su cobertura, se pueden clasificar en diferentes tipos:


Wireless Personal Area Network Artículo principal: WPAN

En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.

Wireless Local Area Network Artículo principal: WLAN

En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.

Wireless Metropolitan Area Network Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

Wireless Wide Area Network Una WWAN difiere de una WLAN (wireless local area network) en que usa tecnologías de red celular de comunicaciones móviles como WiMAX (aunque se aplica mejor a Redes WMAN), UMTS (Universal Mobile Telecommunications System), GPRS, EDGE, CDMA2000, GSM, CDPD, Mobitex, HSPA y 3G para transferir los datos. También incluye LMDS y Wi-Fi autónoma para conectar a internet. 1

Características Según el rango de frecuencias utilizado para transmitir, el medio de transmisión pueden ser las ondas de radio, las microondas terrestres o por satélite, y los infrarrojos, por ejemplo. Dependiendo del medio, la red inalámbrica tendrá unas características u otras:


Ondas de radio: las ondas electromagnéticas son omnidireccionales, así que no son necesarias las antenas parabólicas. La transmisión no es sensible a las atenuaciones producidas por la lluvia ya que se opera en frecuencias no demasiado elevadas. En este rango se encuentran las bandas desde la ELF que va de 3 a 30 Hz, hasta la banda UHF que va de los 300 a los 3000 MHz, es decir, comprende el espectro radioelectrico de 30 - 3000000000 Hz.

Microondas terrestres: se utilizan antenas parabólicas con un diámetro aproximado de unos tres metros. Tienen una cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados. Por eso, se acostumbran a utilizar en enlaces punto a punto en distancias cortas. En este caso, la atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada. Las microondas comprenden las frecuencias desde 1 hasta 300 GHz.

Microondas por satélite: se hacen enlaces entre dos o más estaciones terrestres que se denominan estaciones base. El satélite recibe la señal (denominada señal ascendente) en una banda de frecuencia, la amplifica y la retransmite en otra banda (señal descendente). Cada satélite opera en unas bandas concretas. Las fronteras frecuenciales de las microondas, tanto terrestres como por satélite, con los infrarrojos y las ondas de radio de alta frecuencia se mezclan bastante, así que pueden haber interferencias con las comunicaciones en determinadas frecuencias.

Infrarrojos: se enlazan transmisores y receptores que modulan la luz infrarroja no coherente. Deben estar alineados directamente o con una reflexión en una superficie. No pueden atravesar las paredes. Los infrarrojos van desde 300 GHz hasta 384 THz.


señamles inalambricas