Developing Creativity Through Cross-Disciplinary STEM+A Learning

Page 1


Organization: The Education University of Hong Kong (EdUHK) Project members: Dr. Cheng Mo Yin Vivian Assistant Professor. Department of Science and Environmental Studies, EdUHK Dr. Wong So Lan Senior Lecturer. Department of Cultural and Creative Arts, EdUHK Dr. Leung Chi Hin Assistant Professor. Department of Cultural and Creative Arts, EdUHK Dr. Chan Man Ho Assistant Professor. Department of Science and Environmental Studies, EdUHK Mr. Chan Ping Man Lecturer. Department of Science and Environmental Studies, EdUHK Reviewer: Dr. Hui Na Na Anna Associate Professor. Department of Social and Behavioural Sciences, City University of Hong Kong Dr. Wong Kam Yiu Director. Science Innovation Centre, Hong Kong New Generation Cultural Association Assistant editor: Ms. Kei Suet Yee, Ms. Yau Hiu Huen, Ms. Lam Yuen Yan, Ms. Chan Yin Chi Ms.Lam : lyuenyan@eduhk.hk Proofreading: English Monitor Ltd. Design: Ms. Kei Suet Yee, Ms. Lai Ka Po Release date: March 2020 Publisher: The Education University of Hong Kong (EdUHK) Supported by Teaching Development Grant of Education University of Hong Kong 2017-2020 All rights reserved. COPYRIGHT

2020 The Education University of Hong Kong


Content Chapter 1. Introduction 1.1 What is Creativity Education? ------------------------------------Dr. Cheng Mo Yin Vivian 1.2 What is STEM Education? ----------------------------------------------Mr. Chan Ping Man 1.3 What is STEAM Education? ---------------------------------------------- Dr. Wong So Lan Chapter 2. Curriculum, Teaching, Learning and Assessment 2.1 Developing C through STEM Invention Activities --------------------Mr. Chan Ping Man 2.2 Developing C through Science-related STEM Activities --------Dr. Cheng Mo Yin Vivian 2.3 Developing C through Pro-Environmental STEM---------------Dr. Cheng Mo Yin Vivian 2.4 Developing C through Music-related STEAM Activities ---------------Dr. Leung Chi Hin 2.5 Developing C through Visual Arts-related STEAM Activities -----------Dr. Wong So Lan 2.6 Developing C through Action-based STEM Project ---------------------Dr. Chan Man Ho 2.7 Developing C through Robotics ----------------------------------Dr. Cheng Mo Yin Vivian Chapter 3. Further developments and theories 3.1 Curriculum Model for fostering Creativity thro Cross-disciplinary STEM+A -------Cheng, V.M.Y., Wong,S.L., Leung,C.H.M., Chan, P.M., Chan, M.H. and Lam, Y.Y. 3.2 Multi-Creativities STEM Education - Models and Approaches -------Dr. Cheng Mo Yin Vivian 3.3 Re-conceptualize Creativity in Music, Inspired by Technology -------Dr. Leung Chi Hin 3.4 Developing Teacher Creativity for STEM education -----------Dr. Cheng Mo Yin Vivian 3.5 Self-directed Real-life STEM Problem Solving --------------------------Dr. Chan Man Ho 3.6 Developing C through STEM Learning Assessment -----------Dr. Cheng Mo Yin Vivian


Chapter 4. Appendices 4.1 Student STEM+A works in the 8 courses 4.1.1 Creativity in STEM Invention ---------------------------------------------------Mr. Chan Ping Man 4.1.2 Creativity in Music ---------------------------------------------------------------Dr. Leung Chi Hin 4.1.3 Creativity in Teaching ------------------------------------------------------------Dr. Cheng Mo Yin Vivian 4.1.4 Creativity in Action --------------------------------------------------------------Dr. Chan Man Ho 4.1.5 Nurturing Creativity through Science and STEM ------------------------------Dr. Cheng Mo Yin 4.1.6 Nurturing Creativity through Visual Arts-related Activities -------------------Dr. Wong So Lan 4.1.7 Creativity Development through Robotics---------------------------------------Dr. Cheng Mo Yin Vivian 4.1.8 Creativity and Human Development ------------------Dr. Cheng Mo Yin Vivian, Ms. Chan So Mei Sharon, Mr. Chan Kwok Pui Wylie 4.2 Student Activities Reports 4.2.1 Dream School 4.2.2 STEAM workshop 4.2.3 Science Museum and STEM 4.2.4 Cultural Museum and STEM 4.2.5 Robocon 4.2.6 Micro:bit Design Competition 4.2.7 STEM in SEN schools 4.3 Other Teaching and Learning Supporting Resources 4.3.1 YouTube videos for STEM+A making with classification of topics 4.3.2 List of Educational Resources (1) Reference books (2) Useful web resources (3) Supporting local organizations


1.1. What is Creativity Education? 1.2 What is STEM Educattion? 1.3 What is STEAM Education?


1.1 What is Creativity Education? Dr. Cheng, Mo Yin Vivian Creativity for ALL. Creativity is one of the core skills of the 21st century. Our world education is now transiting from “creativity for gifted” to “creativity for all”. Creativity education is not only to reward those who already have creativity but to foster those who are initially not creative to become creative. We believe that all people can be more creative through learning. However, it is not easy to develop every student to be a creative person and every teacher to teach creativity. Targeting at this goal, a Minor titled “Creativity and STEM/STEAM” (previously named as “Creativity” Minor) was launched in the Education University of Hong Kong (EDUHK) in 2012. Figure 1 shows the courses we are now offering. Course Creativity and Human Development Nurturing Creativity through Visual Arts Activities Nurturing Creativity through Science and STEM Creativity and STEM for Environmental Sustainability Creativity in Music Creativity Development through Robotics Creativity in STEM Invention Creativity in Teaching Creativity in Action Figure 1. Courses of “Creativity and STEM/ STEAM” Minor of EDUHK

Figure 2. An artful integration of divergent & convergent thinking

Our Basic Approach. The most general model for understanding creativity is the 4P model - creative product, creative person, creative process, and creative press (Riga & Chronopoulou, 2014). Commonly, the creative product is defined as one that is both novel/original and appropriate/useful (Runco & Jaeger, 2012). Yet, how can a novice student immediately produce an original and appropriate product, and why a need to do so? The profound creativity scholar, Runco (2003 and 2016), suggested the “developmental perspective” for creativity in basic education, i.e., education should not focus on immediate highly novel products, but for developing student creative potentials. Adopting this developmental approach, we offer our students the creative press (i.e., the environment) and bring all of them through the creative process. A creative process is an artful balance of divergent thinking and convergent thinking (Runco & Acar, 2012, see Figure 2). A creative person is one who possesses various cognitive abilities (see Figure 3) together with curiosity, imagination, and favor of challenges and risks-taking (Williams & Sternberg, 1993).

Figure 3. 4P model of Creativity Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Our Goals. The major curriculum objectives of our courses are to develop students’ creative attitudes, skills, abilities, and habits. All “so-called” products created in our courses are only considered as artefacts for sharing and further development, but not as final indicators/measures of student abilities. We constantly reinforce our students that creativity can be everywhere in daily life, and all of them can be creative. Students should take creativity as a life-long pursuit and a significant part of all their future endeavors. “Creativity is a habit, a lifestyle” (Sternberg, 2006). The ultimate goal of the Minor is to develop our students to be a creative person who takes creativity as a habit and lifestyle. Creativity-fostering curriculum. Based on literature and experiences, this Minor has developed and implemented creativity-fostering formal, non-formal, and hidden curriculum. Their characteristics are summarized in Figure 4.

Figure 4. Creativity-fostering formal, non-formal and hidden curriculum Our Challenges. One important characteristic of our Minor is its cross-disciplinary nature. It offers nine different elective courses, which cover creativity studies in science, visual arts, music, sustainability, robotics, teaching, technological invention, human development, and independent action projects. Students can freely choose five courses out of the nine to complete this Minor. As electives, our students need to walk out of their comfort zone, to learn creativity in a wide range of areas, in which they may have no backgrounds. For instance, students with poor science/technology backgrounds can still be creative in our robotic activities, whereas students with no music background can still create new compositions! The most challenging aspect of our Minor is that the general creativity of students can be fertilized by the various domains, but not constrained by their knowledge and skills in them. How to do so? Do read this book carefully - you will then understand how the teachers overcome this great obstacle in their teachings. Integration and Transfer. Creativities in art and science domains are well-documented to have both commonalities and diversities (Andreasen, 2012; see Figure 5). The exposure to the dichromatic nature of artist and scientific creativity inevitably has widened the horizon of our students. Through the integration of them, our students construct their personal theories of creativity in a broad sense. Throughout our Minor studies, integration and transfer of creative learning are emphasized.

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Figure 5. Creativity in Sciences and Arts – Uses of left and right brain

Final Remark. We had once asked our students to compare the courses they took. Quite unexpectedly, most of the students reported that they saw strong commonalities across our courses, including “interesting open tasks, multiple possibilities, self-directed processes, classroom flexibility, tolerance

of ambiguities, rewarding risk-taking and novelty, looking into the future, playfulness with a lot of fun and surprises…!” Maybe, these are the major characteristics of a creativity-conducive teaching! References

Andreasen, N. (2012). Creativity in art and science: Are there two cultures? Dialogues in Clinical Neuroscience, 14(1), 4954. Riga, V., & Chronopoulou, E. (2014). Applying MacKinnon’s 4Ps to foster creative thinking and creative behaviours in kindergarten children. Education 3-13, 42(3), 330-345. Runco, M. (2003). Education for Creative Potential. Scandinavian Journal of Educational Research, 47(3), 317-324. Runco, M. A. (2016). Commentary: Overview of developmental perspectives on creativity and the realization of potential. New Direction for Children and Adolescent Development, 151, 7-109. Runco, M., & Acar, S. (2012). Divergent Thinking as an Indicator of Creative Potential. Creativity Research Journal, 24(1), 66-75. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity research journal, 24(1), 92-96. Sternberg, R. J. (2006). Creativity is a habit. Education Week, 25(24), 47, 64. Williams, W. M., & Sternberg, R. J. (1993). Seven lessons for helping children make the most of their abilities. Educational Psychology, 13(3-4), 317-331.

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


1.2 What is STEM Education? Mr. Chan Ping Man STEM is the acronym for Science, Technology Engineering and Mathematics. Depending on the educational context, STEM can have very different meanings for teachers. Teaching in STEM means much more than delivering additional curriculum contents. In fact, it is expected that learning experience in STEM can enhance students’ problem solving in daily life. In order to achieve this, the teacher should include activities that involve problem solving abilities. Examples of problem solving activities can include asking students to construct a model to tackle some specific problems. Encourage hand-on, risk taking and trial-and-error. Exploring these problem solving tasks would also mean that students must be willing to take risks in the process. The process of problem solving can include certain trial-and-errors. It is therefore important for the teacher to nurture a classroom atmosphere in which students feel it is alright to try some of the ideas even when they can be wrong sometimes. Teaching models. To organize teaching in STEM, there are two different teaching model that we adopt in our courses. “Incubation model”. It is a popular traditional model in creativity literature (Wallas, 1926; Sternberg & Davidson, 1995). It is comprised of 4 stages - preparation, incubation, illumination and verification (see Figure 1), and can be considered as an intuitive problem-solving model. It is more useful in our arts-related courses.

Intuitive PS ...

i. Preparation

ii. Incubation

iii. Illumination

iv. Verification

Figure 1. Incubation model

Copyright © 2020, Chan Ping Man. All Rights Reserved.


Figure 2. Creative Problem Solving Model Creative Problem Solving Model. For structural problem-solving, a teacher may adopt the famous “Creative Problem Solving” model of Osborn (1963) and Parners (1967) (see Figure 2). Generally, its process includes mess-finding, data-finding, problem-finding to idea-finding, solution-finding and action/acceptance finding. In each stage, students will go through divergent thinking and then convergent thinking. This model is more frequently used in our invention and science-related activities. Reference:

Osborn, A. F. (1963). Applied imagination: principles and procedures of creative problem-solving.Scribner, New York. Parnes, S. J. (1967). Creative behavior guidebook. Scribner, New York. Sternberg, R. J., & Davidson, J. E. (1995). The nature of insight. The MIT Press. Wallas, G. (1926). The art of thought. Education Bureau (2016). Report on Promotion of STEM Education – Unleashing Potential in Innovation. Hong Kong, Ed ucation Bureau.

Copyright © 2020, Chan Ping Man. All Rights Reserved.


1.3 What is STEAM Education? Dr. Wong So Lan STEAM education is an acronym of Science, Technology, Engineering, Arts, and Mathematics. It is an interdisciplinary or even transdisciplinary approach to learning that incorporates a variety of knowledge. Although the Hong Kong Education Bureau (CDC, 2015) has been promoting STEM education since 2015, many countries, such as Canada (Sinay, & Jaipal-Jamani, 2016), UK (Cultural Learning Alliance, 2014), South Korea (Jon & Chung, 2015), and even mainland China ( 教育部辦公廳,2015) are evolving from STEM to STEAM education. I believe the Arts teach students to make good judgements, know that problems can have more than one solution, celebrate multiple perspectives, think through and within materials, and help students learn to say what cannot be said (Eisner, 2002). Since some researchers (Jon & Chung, 2015, Sinay & JaipalJamani, 2016) found that STEM education cannot lift students’ learning motivation and results in a narrow approach to problem-solving. STEM+A education is expected to nurture creative students and artistically literate talents, like Leonardo da Vinci and Steve Jobs. In the course ART2207 Nurturing Creativity through Visual Arts Activities, we intend to stimulate participants to grasp the generic concept and practice of fostering students’ creativity through the Visual Arts and STEAM activities. The course provides rich opportunities for participants to experience the creative process through Visual Arts hands-on activities and interdisciplinary teaching design. STEAM education requires an intentional connection between different forms of knowledge. Participants from different majors are encouraged to review their teaching design and try to put the element of “A” into their teaching subject for showcasing. I believe creative teachers will be able to nurture creative students and help them develop knowledge, critical thinking, problem-solving, and insight through hands-on activities. Besides innovative teaching design, participants need to provide an individual reflection on the theory of space of learning and methods to stimulate students’ creativity.

Copyright © 2020, Wong So Lan. All Rights Reserved.


Reference Cultural Learning Alliance (2014). STEM + ARTS = STEAM [online]. from https://www.culturallearningalliance.org.uk/ images/uploads/STEAM_report.pdf Curriculum Development Council (2015). Promotion of STEM education: Unleashing potential in innovation [online]. from https://www.edb.gov.hk/attachment/en/curriculum-development/renewal/Brief%20on%20STEM%20(Over view)_eng_20151105.pdf Eisner, E. (2002). The arts and the creation of mind. New Haven: Yale University Press. Jon, J.E., & Chung, H.I. (2015). From STEM to STEAM. In B. Freeman, S. Marginson, & R. Tytler (Eds.), The age of STEM (pp.33-46). NY: Routledge. Sinay, E., & Jaipal-Jamani, K. (2016). Toronto District School Board’s K-12 professional learning strategy: Incorporating the arts into STEM. Retrieved from http://www.tdsb.on.ca/Portals/research/docs/reports/STEAMFactSheet.pdf 教育部辦公廳 (2015):《關於「十三五」期間全面深入推進教育資訊化工作的指導意見(黴求意見稿》 http://www.moe.gov.cn/srcsite/A16/s3342/201509/t20150907_206045.html

Copyright © 2020, Wong So Lan. All Rights Reserved.


Curriculum,Teaching,Learning and Assessment 2.1 Developing C through STEM Invention Activities 2.2 Developing C through Science-related STEM Activities 2.3 Developing C through Pro-Environmental-related STEM Activities 2.4 Developing C through Music-related STEAM Activities 2.5 Developing C through Visual Arts-related STEAM Activities 2.6 Developing C through Action-based STEM Project 2.7 Developing C through Robotics


2.1. Developing C through STEM Invention Activities Technology is NOT the key to creativity and innovation

Mr. Chan Ping Man

Since STEM has been given so much attention in the society these days, it is now very common for a teacher to organize some activities that involve technological items. Teachers can find endless possible options for “fancy” high-tech gadgets. More recent examples of such gadgets include 3-D printers, data-loggers, microprocessors or even robots, to name only a few. There are obvious reasons for including these “trendy” gadgets in students’ learning. Afterall, it is very likely that these “new” technologies will become part of their daily life in the near future. However, introducing new technology is usually only part of the story. Caution is needed for the teacher not to get “too excited” in the process. As a teacher, you may want to reflect on these questions before you include some new technology items into your teaching and learning activities:

“How many different technologies should be introduced to students within this stage / year / semester / this course?”;

“Why do I want students to learn this particular type of technology?”;

“Is it worthwhile to learn this technology? Is this type of technology similar to others which students have learnt?”;

“Can the student transfer their learning in this technology to something similar in future learning?’

“Do my students have enough background skills and knowledge to learn this new technology?”; and

“Will my students feel motivated to learn more about this specific technology? Or will they likely be overwhelmed by learning such technology?”.

Please also remember that learning to use different new technological tools is only a small part of STEM. In fact, the key challenge to planning a series of learning activities for creativity and innovation is usually not about choosing which technology is to be included. Creativity and innovation is something that should be cultivated purposefully through teaching and learning. For this purpose you may want to keep a reasonable balance between the technological aspects of your activity with considerations on guiding creativity and innovation. Before you choose which technology is to be included in available lesson time, you should probably stop to ask a more fundamental question: “How should I plan the lesson so that students can have the experience to innovate and create something new?”

Copyright © 2020, Chan Ping Man. All Rights Reserved.


Three themes of STEM: “Hands-on”, “Mind-on” and “Daily-Life” From literature on STEM, we know that the essence of STEM is for “hands-on” and “mind-on”. Both of these two are particularly relevant in the design of activities including creativity and innovation. On the contrary, some may think that ideas about invention and innovation do not necessarily mean “groundbreaking”. For most of the cases, the problems that students are interested to solve are related to daily-life situations. Based on these ideas, the design of teaching and learning activities that nurture creativity and innovation should therefore include guiding students to go through the following seven steps: 1. to discover problems in their daily life. 2. to gather relevant information regarding the problems. 3. to brainstorm some creative strategies for addressing some of such problems. 4. to select some of the proposed strategies based on some criteria for testing. 5. to test the feasibility of some of the selected strategies by building a model. 6. to share and communicate their findings with others. 7. to explore the possibility of further improving the current strategies. It is actually worth noting that these seven steps are also very similar to those of inventors. While famous inventors in history may have gone through these steps on their own in the long years of their efforts, in school we have only a much shorter time (in weeks, days or even hours). Therefore, our students will likely need more guidance to go through these seven steps. You may structure such guidance systematically as different teaching and learning activities specifically for your students. As students may stumble in different stages in the exploration, continuous feedback from teachers in the form of guidance and encouragement is also very important in the process. As students need a lot of trial-and-error when they are executing their ideas, it is also advisable to allocate enough time for efforts.

Figure 1: Students are asked to construct a bridge with a span of 1 meter and can withstand a load of 0.5kg without collapsing.

Copyright © 2020 Chan Ping Man, All Rights Reserved.


Assessment Issues.The next big question for teachers is perhaps “HOW should we assess students’ learning?” While it can be a very complicated issue, a simple but important rule here is to remember WHAT you want to assess. From there you can have some ideas on what assessment methods are more suitable. Remember the three themes of STEM? You can probably assess the “Mind-on” components with different “pencil and paper” tasks. For example, you can ask students to draw a mindmap for their brainstorming activities. But if you want to assess the the “hands-on” components of the learning, written tests are usually not very useful. Students can be required to construct models with specified requirements or constraints. In many cases, student presentation and demonstration may present a lot of more useful evidence than written reports. Another important issue for assessment is that it is generally not a very good idea to use a single assessment method. A good mix of assessment strategies will usually give you a more comprehensive view of the learning outcomes.

Figure 2: Students building simple electronic device from Littlebits.

Figure 3: A mindmap of SCAMPER activity. Students are asked to brainstorm on new mobile phone idea. (Student: Kwok Ming Sum, Li Nga Ling, Chow Sin On, Law Nga Lai) The other groups work on other thing such as

shoes, jacket etc.

Reference

Education Bureau (2016). Report on Promotion of STEM Education – Unleashing Potential in Innovation. Hong Kong, Education Bureau.

Copyright © 2020, Chan Ping Man. All Rights Reserved.


2.2 Developing C through Science-related STEM Activities Dr. Cheng Mo Yin Vivian

Curriculum Design. Our Minor has a course titled “Nurturing Creativity through Science and STEM”. It aims at developing participants’ abilities to teach for creativity through science and STEM activities. It has adopted the experiential learning approach and provided rich opportunities for participants to experience from hands-on science/STEM activities to designing creative learning activities. This course has intensively combined science and STEM learning, with a strong emphasis on creativity-fostering pedagogies and assessments of school education. The four types of elements in Figure 1 were all skillfully integrated into the course. Apart from the Science-STEM integrated activities, metacognitive development in creativity was also developed through self-reflection and self-assessment. As an extension, transfers of creative learning to other domains (e.g., students’ major studies) were requested in the final assignment.

Figure 1. An Integrated Curriculum Design for developing C through Science and STEM Sample Activities and Student Works 1. Developing Imagination – using “what- if” strategy Students were asked to design a new toilet, restaurant, city, ….., what-if the Earth has NO gravity. 題目:假如 演唱會 沒有地心引力 我們設計了一個透明的玻璃管讓歌手在裡面進行表 演,玻璃管裡面設有兩排扶手,可以讓歌手扶著以 固定他的位置,玻璃管上也有很多的小洞,能讓觀 眾可以跟歌手進行互動(握手),而且管子的最低 點有氧氣進去⋯⋯ 每一層都有一塊玻璃分隔,避免觀眾在觀看演唱會 時飄來飄去⋯⋯ 這個練習能令我了解到我們應該怎樣出題讓學生進 行想像力培訓。例如題目應該包括多個場景、需解 決的問題,最重要的是題目在現實是沒有出現的, 這樣才能讓學生訓練想像力。 (by Law Hiu Tung, Leung Man Yi, Wan Wai Shan)

Copyright © 2019, Cheng Mo Yin Vivian. All Rights Reserved.


2. Creative Making - from Reproduction to Transformation Not all STEM starts from a problem. Making can also start from a given model. Students applied the “Cheng’s Creative Making Model” (see Chapter 3.1. for its description) to first reproduce a given WEDO design and then transform it into a machine of other purposes. E.g. a bread cutting machine (切割麵包機) (by Leung Tsz Kwan and Chan Ka Lam)

Floor cleaning machine (清洗地板機) (by Dai Chung Hei and Yuen Wing Tung and Ng Yan Tung)

3. Divergent Thinking enhanced by CT Strategies Students were guided to apply several creative thinking (CT) strategies (e.g., SCAMPER, forced association, metaphor, attribute listing, bionic) to brainstorm many different invention ideas in the design process, before choosing one design for making the prototype.

We use SCAMPER strategies to generate different inventive ideas around “toilet”, e.g., (S) duckling potty, (C) fish pool in toilet, (A) height adjustment, (M) timer for every use, (P) with karaoke facilities, (E) stain remover, (R) turn to a reading room. (by Chan Mang Ki)

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


We force associate “shoes” with various science concepts to create new inventions, e.g., shoes for escape, cleaning, fighting, …. and walking on water (by Tai Ka Mei)

4. Integration of Scientific Inquiries and STEM problem-solving Students design and conduct various scientific inquires to support anti-earthquake STEM inventions

Students compare the shaking with and without the rollers, using the accelerometer app in smartphone

Given some 3D-printed pillar models, students design and conduct vibration experiments to investigate how shapes, structures and, center of gravity of pillars can affect their stability, for designing anti-earthquake buildings

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


5. Remaking after Product Assessment Based on the Cheng’s Self-directed Improvement Approach for STEM (see Chapter 3.1. for its description), students first made a catapult, then used the Creative Solution Diagnosis Scale (Cropley, 2015, see Chapter 3.5 for the Scale) to self-assess the novelty, effectiveness and other characteristics of the catapult. Based on the assessment result, students set their own goals for improvement and remade the catapult.

After first making, we found the catapult base is not robust enough. We then find ways to strengthen it. (by Kei Suet Yee, Ng Hoi Yan)

We made a device that shoots a mailing letter by releasing an elastic band. Yet, after self-assessment, we found the letter sent out by this device could not hit the target accurately. For improvements, we mounted a zip line on top to guide a cabinet (carrying letter) to shoot from one place to another (by Yau Hiu Huen, Zhang Bowen)

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


2.3. Developing C through Pro-Environmental STEM Dr. Cheng Mo Yin Vivian Introduction. Environmental sustainability (ES) is one of the most significant human concerns in today’s world. Creativity is at the heart of all changes and problem solving, and is believed to be key to achieving a sustainable future. Pro-ES creativity involves a lot of STEM works, e.g. (at the societal level) technologies and designs for constructing green cities and buildings; (at the personal level) using solar power in dailylife, changing food wastes into fertilizers, making soap from natural resources, self-inventing a water-saving device, upcycling furniture, repairing domestic appliances, etc. A Curriculum Design. A course titled “Creativity (and STEM) in ES” is offered by the Minor of EdUHK. It covers STEM and creativity in many areas, including environmental sustainability in personal living, economics, consumerism and commercial fields, technologies, energy use and generation, smart-cities, building, transportation, and etc. It aims at enhancing students’ creativity and STEM competence for actualizing ES in all these aspects, going in-depth into advanced knowledge or skills. The course has skillfully integrated different technologies, role-taking and creativity-fostering strategies to develop creativity for eight pro-environmental aspects (see Figure 1).

e.g. upcycling, repairing, saving...

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Sample Activities and Student Works 1. Upcycling daily wastes

Making a toy gun from broken umbrella bones.

Using the trash like CD, straw, tape and plastic cup to make a toy car.

Making a ukulele with moon cake box (by Kei Suet Yee).

2. Upcycling with 3D printing

Making a slipper by adding a 3D-printed belt to a compressed plastic bottle

Students 3D-printed some additional parts to change some waste bottles into mugs or cups. A handle for coffee mug (by Choi Sze Wai). An insulation cup ring (by Chan Mang Ki). A cup handle (by Chan Yan Kiu).

3. Repairing with 3D printing

Photos prepared by Tang King Ho

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


4. Creative Making – Inventing Eco-Machines

Used the wooden stick to stir the clothes. (by Choi Sze Wai)

Different ways to swing away the water. (by Mak Lai Yan and Coby Kwok)

5. To be an Eco-Architect Air conditioners consume much more electricity than fans. Students imitated an eco-architect to design a house that possesses passive and effective cooling. They were asked to make a green-house model in half an hour, using an A4 box and a small fan. The house that created the greatest cooling effect on the cup of hot water inside won the competition. Apart from eco-architect, students can also become an eco-engineer, eco-doctor, eco-firemen, …, practising interesting STEM works.

6. Smart City - A simple invention activity The transmitter and receiver of littleBits kit were chosen for distant control. Each group connected a sensor with the transmitter, and then connected one output (e.g. motor, LED) with the receiver. The students then suggested the use of this system in one given context (e.g. home or supermarket). Again the activity can finish in half an hour, as an extension to smart city discussion in lesson.

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Smart Sofa – it remote-controls the TV. Smart Supermarket – it turns around to sunlight A pressure sensor is installed in the “sofa”. The TV automatically. A light sensor is installed in the will turn off when nobody sits on the sofa. “supermarket”. When it cannot sense sunlight, the (by Cheng Si Xuan) servo will turn on. The store will turn around to receive sunlight. Similarly, a fan is controlled by a temperature sensor to save energy. (by Chan Mang Ki)

7. Transforming a STEM device for a pro-environmental purpose

Transforming a drone into a colored lighting device, for replacing the fireworks of Disneyland (by Choi Sze Wai)

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


2.4 Developing creativity through Music-related STEAM Activities 配合STEAM的音樂教學以培養學生的創造力及協作能力 梁智軒 博士 近年,香港政府、各中小學及大專院校均致力推廣STEM教育。香港教育大學的STEM教育則加入 了藝術元素,成為STEAM教育,即通過科學(Science)、科技(Technology)、工程(Engineering)、藝術 (Arts)及數學(Mathematics)各科的融合,培養學生的創造力、協作和解難能力。有見及此,「音樂中 的創造力」課程(Creativity in Music) 也加入了STEAM元素,引導來自不同學科的同學去作曲及演 奏,體驗成為音樂發明家的滋味。本課程設計的STEAM 教學活動涵蓋了聆聽、演奏和創作等綜合 活動,讓學員:(一)認識電子音樂的音樂特徵;(二)運用電子積木發明獨特的樂器;(三)配合適切的作曲 手法,為嶄新樂器創作原創音樂作品;(四)演奏或即興演奏原創作品;以及(五)善用STEAM的多元角 度,評賞創作過程及音樂作品。 「音樂中的創造力」為一個選修科,供所有本科生修讀。課程每週授課三小時,為期 13 個星期(即 一個學期)。課堂在常規教學環境進行,學員將能夠掌握基本音樂知識及風格,運用Max編程軟件 littleBits電子積木進行作曲、編程和樂器製作。學員會以小組形式為設計的電子樂器創作一首作 品。作品完成後,由小組演出並以錄像方式及圖像譜記錄。 傳統的音樂創作,過程非常個人化,例如貝多芬就是作品的靈魂人物,整個創作過程都是一個人去處 理所有問題,由樂器選擇以致其配搭,旋律的創作及和聲的配合等等,都完全倚賴作曲家個人的決 定。可是,在一個課室環境下,如果能夠運用小組的力量,將可擦出更多創作的火花並且互相學習,而 產生更獨特的創作。John-Steiner提出:持續與互惠的協作關係,可以為個人提供一面鏡子,有助擴闊 自我認知,這對於發展個人的創造力至關重要(Barrett,2006)。再者,以協作方式進行音樂創作,過程 有助學生從差異中學習(Saether,2013),可加強培養批評性思考。所以,本課程的設計有別於傳統的作 曲課程,學員以小組形式合力創作樂曲。

活動一:使用導電體的方法來創作音樂

活動二:使用視覺編碼來創作音樂

在音樂學院或大學音樂系的課程中,一般集中訓練樂器技巧、音樂演繹、視唱練耳、樂理及作曲等 等。即使是音樂主修的同學,通常不會接觸到樂器製作。音樂創作亦只局限於演奏和作曲。音色的設 計及探索,在當代音樂尤其重要。樂器製作就正好填補這一個較少探究的課題。通過設計一個電子樂 器,作曲家可以達到其創作意圖 (Matsunobu,2012)。課程將創造力的邊界推進,把作曲由運用各種不同 的音樂素材擴展到音色的探索、樂器的製造及演奏方式的重塑。讓學員先了解音色的由來,再配合音 高和節奏,創作獨一無二的樂章。

Copyright © 2020, Dr.Leung Chi Hin. All Rights Reserved.


另外,現代化的教育制度將藝術、科學及數學分門別類,獨立成科。在這個背景下,現今的 STEAM教育理念讓我們重倡「全人教育」(Connelly,2012),善用多媒體展現創造力(KatzBuonincontro, 2018)。由於跨學科有助結合知識的創造和應用,過去STEM教育在推動創新及增 強經濟競爭力方面,均取得成果。在這個基礎上,引入藝術和設計元素,將會帶來更大的果效 (Allina, 2018)。 學員來自不同學系及主修課程,包括創意藝術與文化榮譽文學士(音樂/視覺藝術)課程、人 類與組織發展榮譽文學士課程、音樂教育榮譽學士課程、英國語文教育榮譽學士課程、中國語 文教育榮譽學士課程、 音樂教育榮譽學士(當代音樂及演奏教育學)課程,以及通識教育榮譽 文學士課程等。他們擁有不同程度的音樂訓練及背景。當中,有學員從未接受過任何正規樂器 訓練,而有些學生則曾接受作曲訓練。在修讀本課程之前,大部分學生都沒有STEAM學習體 驗。 通過三組焦點小組訪談,探究學員有關創造力的經驗。第一組的學員認為STEAM帶來了嶄新 的學習體驗,鼓勵運用電子積木,探索音樂的可塑性,創造意想不到的聲響效果。他們覺得 STEAM教育重視創造力;為求創新,他們要發揮創意思維。第二組的學員運用電子積木,創 造出嶄新的音色,而不是沿用既有的模式或現成的聲響;創作過程別開生面,因為他們覺得自 己正在創新,而不是模仿。第三組的學員在課程中學到STEAM 的知識,提供了創作所需的條 件,提升了的創造力;在創作過程中,電子積木和編程軟件為他們帶來很多可能性,激發他們 去構思及完成作品;相比傳統的音樂課,這個課程採用了學生為本的模式,有助提升我們的創 意思維。 有關以協作方式,進行音樂創作,第一組根據不同的回饋意見,對作品加以改良,創造出理想 的聲響。他們以小組形式合作,不設組長,因此整個過程並不是由任何一個人主導。他們互相 交流想法,然後整合意見。第二組則按照各人的專長分工合作,並互相幫助。第三組讓每位組 員均有份參與聲響效果的資料搜集。另外,在硬件和軟件的技術操作、構思故事情節、錄像和 錄音,以及記錄不同聲響效果的設計過程方面,我們也採取了分工合作的方式。每位組員都順 利完成分配的工作,並各展所長,一起分享成果。他們選定了作品的主題為外星人襲地球。為 了創造層次豐富的音效,他們曾經討論採用 Logic Pro 的可行性。在最後階段,他們構思了一 個富有意義的故事背景,貫串整首作品 。

活動三:使用Micro:bit製作電子音樂

活動四:使用平板電腦合成音樂

Copyright © 2020, Dr.Leung Chi Hin. All Rights Reserved.


活動五:小組即興創作以及作曲 有關學員對此協作式創作的反思,第一組的創作來到後半部,有很長一段時間停滯不前。這是 由於我們對於火箭升空之後的情節發展,得不到共識。此外,器材的限制也成為我們其中一個 顧慮。直至,他們在課堂上學習到泛音,決定讓其中一位組員演奏泛音,激發我們構想出尋找 外星人的情節。組員十分欣賞這首音樂作品。事實上,他們自己的創作成果比想像中還要出 色。這是他們首次創作出「非傳統」的音樂作品,這個過程比傳統作曲有趣。我可以摒棄所有 規則和理論的限制,創作出能夠表達我的想法的「聲音」。這類音樂最吸引的地方,莫過於 此。第二組在進行音樂創作前,他們構思了一個富有意義和創意的故事,因為他們相信,音樂 創作應該帶出一個富有意義的訊息。因此,他們構思了《生與死——一個生命的歷程》為題的 故事情節。是次音樂創作,他們覺得踏出了自己的安舒區,在課程中獲得啟發,而且學會運用 不同的工具,進一步提升自己的創造力。第三組的創作過程中,有些組員專注探索電子積木, 有些組員則把電子積木連接到電腦以測試不同的聲響。隨著對電子積木的認識加深,他們創作 出不同的樂曲,能夠描述各個故事場景,例如槍聲、風聲、不明飛行物體登陸或怪獸的咆哮聲 等。是次創意專題研習著重嶄新的創演經驗,並且通過不同的方式,在音樂創作中注入新的元 素,開拓更多的可能性。很多組員也以協作方式,構思一些即興的部分,如描述人類的軍隊與 外星人大戰等情節。他們運用樂器設計出不同的聲響,然後綜合它們,構成富有意義的故事和 背景。同時,通過腦力激盪法去集思廣益,他們一起構想以外星人為主題的情節發展。他們認 為自己成功創作出幾種「嶄新」的音樂。他們為自己的作品感到自豪,是協作的成果,達到高 水平的佳作,展現了組員的各種才能。 總的來說,這個嶄新的協同音樂創作過程,讓學員於短短一個課程裏,在沒有什麼前設下,能 夠經歷真正的音樂創作過程,並且加入樂器製作元素,使得整個創作過程及結果都充滿驚喜,

Copyright © 2020, Dr.Leung Chi Hin. All Rights Reserved.


參考文獻 Allina, B. (2018). The development of STEAM educational policy to promote student creativity and social empowerment. Arts Education Policy Review, 119(2), 77-87. Barrett, M. (2006). ‘Creative collaboration’: An ‘eminence’ study of teaching and learning in music com position. Psychology of Music, 34(2), 195-218. Connelly, G. (2012). Art puts the STEAM in STEM. Principal, 92(2), 48. Retrieved from http://www. stemedcoalition.org/stem-ed-coalition-activities/ Katz-Buonincontro, J. (2018). Gathering STE(A)M: Policy, curricular, and programmatic developments in arts-based science, technology, engineering, and mathematics education introduction to the special issue of arts education policy review: STEAM focus. Arts Education Policy Review, 119(2), 73-76. Matsunobu, K. (2012). Instrument Making as Music Making: A Slow Food Approach to Musi cianship. In A. R. Brown (Ed.). Sound Musicianship: Understanding the Crafts of Music (pp. 178-188). Newcastle upon Tyne: Cambridge Scholars Publishing.  Saether, E. (2013). The Art of Stepping Outside Comfort Zones: Intercultural Collaborative Learning in the International GLOMUS Camp. In H. Gaunt, & H. Westerlund (Eds). Collaborative Learning in Higher Music Education (pp. 37-48). Surrey: Ashgate  Publishing Limited.

Copyright © 2020, Dr.Leung Chi Hin. All Rights Reserved.


2.5 Developing C through Visual Arts related STEAM Activities 透過與視覺藝術有關的STEAM活動提高創造力 黃素蘭 博士

學科內容簡介 「透過視覺藝術活動培養創造力」 (Nurturing Creativity through Visual Arts Activities) 是一 門選修課程,旨在透過與視覺藝術有關的STEAM活動,引導各學系的學員掌握A的概念和培養 創意思維的方法,最後以小組形式設計和實施一個聯繫日常生活需要,以「動手做」為原則的 STEAM教學活動,當中必須具備與視覺藝術創作有關的活動,引導中/小學生建構相關的學科知 識之餘,亦可以培養協作、解難和創新等能力。 我們相信具創意的教師能不斷反思教學問題,並因應學生的成長特徵、能力、需要和已有知識, 設計具創意和「動手做」的教學活動,引導和啟發學生的創意思維和創造能力。基於此,本課程 會提供豐富和有趣的視覺藝術和創意活動,讓學員通過視覺藝術學習活動中強調的「做中學」原 則去體驗和感受各種創意思維形式和創造歷程,期望學員能應用和轉化課堂所參與的活動於各學 科之中(見圖1a-1d及https://www.youtube.com/watch?v=SMVNE3-7BG0&feature=youtu.be);例 如:在各學科中如何應用創造力的五種認知能力 (陳龍安,1995) 激發學生的創意潛 能? 以會發光的咭(圖1a)為例,結合了常識科的閉合電路和視覺藝術科的賀咭設計。當中既牽涉閉合 電路的探究,亦要考慮賀咭上的圖像在甚麼位置會發光 (詳見附件一的簡報)。這活動能考驗學員 的敏覺力、變通力和精進力。

圖1a:會發光的咭

圖1b:探究音樂與繪畫結合的創作

Copyright © 2020, Wong So Lan. All Rights Reserved.


圖1c:定格動畫製作過程

圖1d:製作會繪畫的機械人

引入STEM+A的原因 近年,不少國家及教育團體相繼提出STEAM教育的發展需求 (Marginson, etal., 2013) ;如南韓政府發現推行STEM教育多年,學生對STEM學習缺乏興趣,對數學和科學的 信心和學習動機都低於PISA (Programme for International Student Assessment) 和TIMSS (Trends in International Mathematics and Science Study) 的平均水準,因此決定要把STEM 教育修訂為STEAM教育。 由於在STEM課堂融入藝術 (A) 活動能夠令所有學習者深深地投入於想像與設計思維的 探究歷程 (Cook, Bush, & Cox, 2017) ,南韓教育部為了建立未來形態 (future-type) 的科學課堂 (Jon, & Chung, 2015),於2011年提出要全面在中小學實施與STEAM學 科相關的課程,以培育具創意和藝術素養的未來達文西 (Leonardo da Vinci) 和喬布斯 (Steve Jobs)。 雖然香港課程發展議會在2015年仍然出版未能反映A的《推動 STEM 教育—發揮創意 潛能》,但「創造力副修課程」(Creativity and STEM/STEAM Minor) 在加入STEM教育 之外同時加入了A元素,以回應缺乏A的STEM教育的不足。期望來自不同主修科的學員 能在「透過視覺藝術活動培養創造力」的課程中掌握STEAM教育的意義。最後在小組 的教學設計與演示(Showcase)中能夠實踐本科所學的知識與方法。下文試舉一個與視覺 藝術(A)有關的數學(M)活動與大家分享。

Copyright © 2020, Wong So Lan. All Rights Reserved.


密鋪平移(M+A)的教學示例 主修視覺藝術的學員都認識藝術家艾斯查 (M. C. Escher) 的創作與數學有關,但不會深究 當中牽涉甚麼數學原理。透過與數學科的綜合活動,先讓已掌握因數概念的高小學生從 「動手做」之中發現只有五邊形不能密鋪 (見圖2),然後引導學生探討五邊形不能密鋪 的原因。

圖2:哪些是可以密鋪的幾何形狀? 圖片修訂自陳少雯、郭明心、莫佩然、黃愷婷和胡麗華5位數學組同學的教學簡報

為甚麼只有五邊形不能密鋪?老師給學生的提 示包括:標示在幾何形狀上的角度。學生要能 說出 (1)等邊幾何形狀的角度是360的因數,例 如60, 90, 120 ; (2) 內角和必須是360度。掌握 幾何形狀能夠密鋪的數學概念後,學生便容易 理解艾斯查 (M. C. Escher) 的數學和藝術創作 理念:只要應用符合數學上密鋪原理的幾何形 狀,無論進行甚麼方法的分割與重組 (見圖3) ,都能做到「密鋪」的創作 (見圖4a-4b)。

圖3:正方形的分割

Copyright © 2020, Wong So Lan. All Rights Reserved.


圖 4a:密鋪的創作示例

4b:密鋪的創作示例

課程的評估方法 這個課程在第一課便跟學員討論何謂創意、創造與創新。在課程中亦會讓學員辯論教師在 教學前訂立明確的學習目標和評估準則會扼殺學生的創意及創造力嗎?處理以上概念後, 學員會較容易理解培養學生創意,需要具勇氣和信心的教師,跳出只是為考試而教學的「 安全」範圍,敢於承擔創意教學的風險 (Steers, 2013)。密鋪平移的教學示例,便是讓學員 跳出既有的教學方法,以小組形式設計和實施一個具創意和學科綜合的教學活動。 Villablba (2009) 指出要量度創意必須要有一套量度指標,基於評估重點各異亦需要有不同 的量度指標;但他從文獻回顧中發現大家都認同評估創意的指標是要具創新 (innovation) 表 現。簡單來說,就是要把創意實踐出來,令大家都認同表現新穎、高質素和具價值,這都 是定義創造力的關鍵要素(Cropley及Kaufman, 2013)。 基於此,本課程的小組教學設計與演示應用了以上的「量度指標」,並透過同儕和導師提 供的意見 (見附件二),讓每位學員在小組演示後審視試教過程和學習結果,為小組設計的 創意教學作出有理據的後設反思。此外,本課程亦會藉作品集,協助學員建構個人對創意 及創造力的概念,例如:結集課堂活動的圖片、簡單記錄對活動的反思;通過課後搜集具 創意的圖片,指出給個人甚麼啟示等,以回應Simonton (2013) 所指 : 評估個人的創意或創造 力,需要透過自我報告 (self-report) 來進行 (見附件三)。

Copyright © 2020, Wong So Lan. All Rights Reserved.


藝術就是遊戲,本課程鼓勵學員在各自的主修科目中,透過視覺藝術活動和跨學科的基礎知 識,發展學生的創意、解難和協作等能力。藝術創作亦是人類與生俱來和自然進行的活動, 除了追求美的表現外,最重要是人們可以透過藝術創作活動表現個人的思想、感情和創造力 (Lowenfeld及Brittain,1987)。在面對STEAM教育的年代,要培養學生的創造力,便要建基於不 同領域的知識和掌握創意思維方法;在追求創新的時代,藝術創業 (artpreneurship)亦開始成為 未來教育的發展方向 (Kraehe, 2019)。 參考資料 Cook, K. L., Bush, S. B., & Cox, R. (2017). From STEM to STEAM: Incorporating the arts in roller coaster engineering project. Science and Children, 54(6), 86–93.Hardiman, M., Magsamen, S., McKhann, G., & Eilber, J. (2009). Neu ro-education: Learning, arts, and the brain. Retrieved from http://www.giarts.org/sites/default/files/Neuroeduca tion_Learning-Arts-and-the-Brain.pdf Jon, J.E., & Chung, H.I. (2015). From STEM to STEAM. In B. Freeman, S. Marginson, & R. Tytler (Eds.), The age of STEM (pp.33-46). NY: Routledge. Kraehe, A.M. (2019). Entrepreneurship as creative destruction. Art Education, 72(5), 4-6. Lowenfeld, V., & Brittain, W.L. (1987). Creative and mental growth. Englewood Cliff, NJ: Prentice Hall Career & Tech nology. Marginson, S., Tytler, R., Freeman, B., and Roberts, K. (2013). STEM: Country comparisons. Report for the Australian Council of Learned Academies. Retrieved from https://www.acola.org.au/PDF/SAF02Consultants/SAF02_ STEM_%20FINAL.pdf Simonton, D.K. (2013). What is a creative idea? Little-c versus big-C creativity. In K. Thomas, & J. Chan (Eds.), Hand book of research on creativity (pp.69-83). Chellengham, UK: Edward Elgar. Steers, J. (2013). Creativity in schools: delusions, realities, and challenges. In K. Thomas, & J. Chan (Eds.), Handbook of research on creativity (pp.162-174). Chellengham, UK: Edward Elgar. 陳龍安 (199):《創造思考教學》,香港,青田教育中心。 課程發展議會 (2015):《推動 STEM 教育—發揮創意潛能》,香港,編者。

Copyright © 2020, Wong So Lan. All Rights Reserved.


Copyright © 2020, Wong So Lan. All Rights Reserved.


Copyright © 2020, Wong So Lan. All Rights Reserved.


同儕意見

導師的評語 一直以來,大家都知道「密鋪圖形」是視覺藝術科與數學科緊密結合的課題。視覺藝術科很多 時會通過 M.C. Escher引導學生創作「密鋪」的圖案設計。這一課,在小四的數學科讓我們掌 握不同幾何形狀的「內角和=360度」才可以形成「密鋪」。小組通過探索活動,給每組學生 派發正方形(內角和=360度)、直角三角形(內角和=360度)、五邊形(內角和=540度)或梯形(內 角和=360度),請他們以「整齊排列」方式排列出「沒有空隙」的「密鋪圖形(案)」,讓學生 說出哪些形狀可以或不可以密鋪 (意圖帶出「因數」的已有知識──內角和是360的因數),具 建構學習的理念,活動的構思能提起學生關注和思考,不錯。 小組運用已有知識的等邊、等腰、直角和任意的三角形作提問──這些三角形都可密鋪嗎?然 後拼合為不同的四邊形(包括菱形和梯形)給學生觀察,再展示任意四邊形的密鋪方法。如果小 組能讓學生透過「做中學」說出當中的原理,相信學習成效會較教師單向講授更見效果。 在學習重點的組織上,如果在完成活動一後直接討論不同形狀的角度,讓學生發現「正多邊形 的其中一角要是360的因數」或「內角和是360的因數」會更理想。M.C. Escher的作品可以 作為挑戰題,讓學生討論不規則的形狀可以如何密鋪。教師可以正方形為例,示範剪出和拼貼 一個不規則形狀,引導學生觀察和思考怎樣創造一個能夠密鋪的不規則形狀。 整體而言,這是一個具有穩固數學和視藝科知識的綜合學習活動,選材恰當,習活動大致能夠 吸引學生關注,並能透過「動手做」讓學生選擇能密鋪的幾何形狀,以創造各種不規則的形 狀,並驗證只要來自能密鋪的幾何形狀,製作出來的不規則形狀同樣可以做到密鋪的效果。

Copyright © 2020, Wong So Lan. All Rights Reserved.


評估表格

Copyright © 2020, Wong So Lan. All Rights Reserved.


2.6 Developing C through Action-based STEM Project Dr. Chan Man Ho Introduction. In our creativity and STEM+A minor, there is a capstone course called “creativity for/in/ on action”. This is a project-based course and it provides a platform for students to transfer what they have learned in previous arts and sciences courses to solve authentic problems in novel educational and reallife situations. Following the action theories of creativity (Sawyer, 2006), students can apply creativity in solving problems and develop their creativity in/through action. Students have to construct their personal theories of creativity, through a theoretical framework of creativity for, in and on action. See Figure 1.

Figure 1. Creativity for/in/on Action Model (extracted from Chapter 3.1 of this book )

Creativity for/in/on action. Roughly speaking, the learning process can be divided into three stages: creativity for action, creativity in action and creativity on action. 1. In the first stage (creativity for action), students are required to identify a real-life problem to solve. Then they have to incubate, design and plan what they would do to solve the problem. 2. In the second stage (creativity in action), students need to perform the tests or experiments required and redesign the prototypes. They might encounter difficulties and failures throughout this stage. Some of them might need to change the whole topic (identify another problem) or completely redesign another prototype. 3. In the final stage (creativity on action), they need to evaluate and reflect on their whole process and construct their own personal creativity theories.

Copyright © 2020, Chan Man Ho. All Rights Reserved.


In each of the stages, students are required to present their ideas, the difficulties encountered, their solutions and their plans. Other groups provide feedback and comments to the presenting groups. Through the ideas exchange and comments, most of the groups can successfully design new products that could solve the identified problems. Reflection. Apart from the designed products, students are required to provide reflection on the whole design process and construct their own personal theories of creativity. For example, students need to reflect on how they find the problems, how they solve the problems and how they evaluate the problems. Based on their reflection, they could find out what creativity is and how creativity can be developed. This task is included in their final assessment (the essay). Through this activity, students can develop their metacognitive skills and consolidate what they have learned in other creativity courses. Assessment. The assessment of this course includes three components (see Table 1). Firstly, all class participations and class works will be included (10%). This encourages them to engage in our lessons and activities actively. Secondly, students have to conduct a creativity-action project and verbally present its proposal, interim and final report in class (20% total). During presentations, other students are required to comment on the proposals and presentations. The interactions among students were very positive and vigorous. Most of the students thought that the comments and suggestions were very useful. Finally, each student has to submit a final portfolio, including the final products and an essay summarising the development of the creativity project. Each student has to write a reflection on the learning in the project and the whole course. It may include the construction of a personal theory of creativity, the selfregulation of creative thinking, the development of metacognition, the transfer of the creative learning, the relationships of creativity and action, the wisdom for actualising creativity in real-life or other aspects of creativity development. The final portfolio contributes the remaining 70% of the total assessment. Generally speaking, most of the students can submit good portfolios.

Table 1: The assessment scheme.

Copyright Š 2020, Chan Man Ho. All Rights Reserved.


Student’s Final presentation:

Reference

Sawyer R. K. (2006). Explaining creativity: The science of human innovation. New York, Oxford.

Copyright Š 2020, Chan Man Ho. All Rights Reserved.


2.7 Developing C through Robotics Dr. Cheng Mo Yin Vivian Our Challenge. One of the courses in the Minor is “Developing creativity through Robotics�. It aims at developing the creativity of participants through studies in robotics, and, at the same time, equipping them with competence in teaching with robots. The most interesting and unique characteristic of this course is its intensive integration of creativity education, and robotics. As an elective course, it accepts ALL students. In fact, most students have no background in science, physics, engineering, STEM, or robotics. How can such a single course teach creativity in robotics to novices? Our Curriculum Design. From the very beginning, this course is not targeted at advanced technology and skill but developing general creativity through simple robotics activities. Here, creativity in robotics is not considered as one single construct but separable creativities in different robotics processes, including creativity in goal setting, researching, designing, making, coding, testing, selling, anticipating, application, and teaching with robots. This course has skilfully integrated different technologies/tools, tasks of diverse drivers, and creativity-fostering strategies to develop creativity in these ten robotics processes (see Figure 1).

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Sample Activities and Student Works 1. Science behind Robotics For example, students assembled these robot arms and studied the mechanical principles behind them (including principles of lever, gear & hydraulic press) and brainstormed their possible uses in real-life.

e.g. for testing the strength of glass cover of handphone

2. Bionics For example, students studied the following robots – what living thing they are mimicking? What are the strengths? In what ways? What are their differences? Which is the best/worst?

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


3. Transforming a given Robot Adopting the Cheng’s Creative Making Model (see chapter 3.1 for explanation), students improve and then transform a given Mindstorm or VEX robot model, through changing either its functions, mechanisms or tools.

4. Constructing Robot Theme Started with a given robot theme (e.g., future sushi restaurant), students then brainstormed a lot of robot ideas around this theme, using various creative strategies. Below is a demo for students.

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


·“Chef robot” makes sushi for the customer. · In the restaurant, “waiter robots” (Edison car, Qbit, and Droid) serve sushi to tables, but for take-away, Drones offer faster delivery. · “Wasabi Robot” dispenses /writes “wasabi heart” for customers. · “Calorie Watch” counts and calculates calories for each meal. (prepared by Lam Yuen Yan, Chan Mang Ki, and Kwok Tze Fung)

5. Visits Students visited Robot Café, Exhibition of Science Park, and CSENIE Center of EdUHK, they studied the potential of the robots in industries and real-life.

(visiting Pepper in CSENIE Center of EdUHK and studying its uses in teaching)

(investigating a big advanced robotic arms and other robots used in industries)

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


6. Assessment. Students were required to produce a one-min video to present a story of their invented robots in a daily-life context. Their creativities in robot designing, making, application and teaching are all assessed. Below are their robots made.

Student works of Chung wing Yiu, Wong Hoi Ching, Li Y Zheng Justin, Leung Wai Yi, Lee Kin Ching, Yu Ka Wai, Mok Hei Man, Chan Hong Yi, Mak Ka Wai, Leung Tin Yat, Lam Chun Kit, Tsui Hok Sing, So Long Ching, Tai Yeung Yeung, Lee Kang Yu Emily, Lee Shuk Han, Leung Mo Yin, Chau Wing Leong, Yuen Wing Tung, Ng Yan Tung, Ko Chi Tung, Wong Tsz Lok, Liu Yung Chit, Kwok Tsz Fung, Yeung Man Lok

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


3.1 3.2 3.3 3.4 3.5 3.6

Curriculum Model for fostering Creativity thro Cross-disciplinary STEM+A Multi-Creativities STEM Education - Models and Approaches Re-conceptualize Creativity in Music, Inspired by Technology Developing Teacher Creativity for STEM education Self-directed Real-life STEM Problem Solving Developing C through STEM Learning Assessment


3.1 Curriculum Model for fostering Creativity through Cross-disciplinary STEM+A By Cheng, V.M.Y., Wong,S.L., Leung,C.H.M., Chan, P.M., Chan, M.H. and Lam, Y.Y.







3.2 Multi-Creativities STEM Education Models and Approaches 多元創造力STEM教學模式及方法 鄭慕賢博士 大多數教育者認為STEM只是引導學生製作一些科技產品或發明。其實,STEM教育的目的是在過 程中培養學生的創意/創新的態度和能力 (請參閱第1.1章),而不是立即生產偉大的作品。教師如 何在STEM中培養這些創意態度和能力?學術界有很多關於創意教學的文獻,但當中極少專門研究 在STEM中培育創造力的。建基於多年在相關領域的教學和研究經驗,我特意為此目的開發了一套 STEM課程設計及教學方法,並命名為 「鄭氏多元創造力培育的STEM教學模式」。它包括以下六 個子教學模式,以及其眾多教學方法。 1.多層次創造力模式

Kaufman and Beghetto(2009)提出四個不同層次的創造力: 包括 微型C、小C、專業C和大C (即mini-C, small-C, professional-C and big-C) 的創造力。 我按照他們的理論, 開發了四種培養創造力的教學法: ·微型C之創意教學法 — 引導學生透過體驗和反思創意過程,以建構對創造力和STEM的個人的理 解和知識(請參閱第3.4和4.1.4章)。 ·小C之創意教學法 — 引導學生創意地運用STEM來解決日常生活上的問題或完成日常任務,而無 需應用任何特定領域的高深知識和技能。本書描述的大多數學習都屬於此類。 ·專業C之創意教學法 — 引導學生基於專業知識發展其創造力。例如,教學專業的創意、教師的創 造力(請參閱第3.3和4.1.3章)。 ·大C之創意教學法 — 引導學生透過分析歷史中 (或現代) 的偉大發明家的生平,以了解他們的創 意特質及如何發明劃時代的產品(請參閱第2.1, 4.1.4和4.1.8章)。

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


2.多領域創造力教學模式 也有很多老師誤以為只能在STEM的設計過程中開發學生創意,但這肯定是不正確的。 其實,工程 設計流程中的每個步驟都可以培養創意。「STEM的創造力」並不是單一結構的,而是由眾多組件 或多元子領域的創意組成。 參考一些工程模型(Atman et al., 2007; Cropley, 2015; Howard, Culley & Dekoninck, 2008; Ozkan, 2019),我將STEM + A中的創造力概念化為七個不同領域的創造力: · 發現問題的創意 · 研究的創意 · 設計的創意 · 製作(包括應用工具及編程) 的創意 · 測試的創意 · 介紹作品 (包括預想未來發展) 的創意 · 美和藝術探索的創意 在我們的副修課程中,幾乎所有學習都涉及設計、製作、測試和介紹作品的創意。相對來說,科 學、發明、機器人、可持續發展或行動研究的課程,比較注重發現問題和研究的創意。相反,音樂 和視覺藝術課程則比較注重美和藝術探索的創意。 在我們整個STEM + A的教學中,七個子創意領 域並不是單獨發展的,而是互相影響和彼此促進的。下圖總結了此STEM教學模式及其教學方法。 注意: 以下每個子領域都可以展示美和藝術探索的創意。同時, 請參閱第2.7和4.1.7章。

針對既定問題/任 務,發展眾多不同新 的研究方法,包括設 計實驗、數據收集及 分析的方法。

為某些主題/情境/目 的,發現和建構眾 多不同新的問題。

用創意的方法來介紹產 品的長處和限制,包括 它在現實中的用途,以 及它眾多不同新的潛在 應用和未來發展。

針對既定問題/任務來 產生眾多不同新的設計 意念,並選擇部分意 念,然後進一步整合它 們為一個完整的設計。

設計、材料、工具 和 技能的創意結合; 在 製作過程中克服各種 限制, 及發現眾多不 同新的知識和方法。

自創眾多不同新的方 法來測試已完成作 品, 及測試過程中的 製作。

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


3. 多元創意引發教學模式 創意不能夠直接傳授,而是需要透過良好的提示來激發的。但是,STEM 創意一定要由問題引發 嗎?不! STEM 活動通常包含六個元素—情境、問題、知識(或技能)、工具、材料及方案。如果適 當地選擇及設計,當中任何一個元素都可以是良好的引發創意的工具。基於此,我開發了六種不 同的引發創意的教學法。它們分別是:

·問題引發: 從既定問題開始引發創意(請參閱第2.1,2.6,3.4章中的示例); ·情境引發: 從情境開始引發創意(請參閱第2.7章中的壽司店示例); ·工具引發: 從已有STEM工具開始引發創意(例如第3.3章中的無人機示例); ·材料引發: 從已有材料開始引發創意(例如報紙的升級重造); ·知識引發: 從所教的知識(或技能)開始引發創意(請參閱第3.3章);以及 ·方案引發: 從現有方案開始引發創意,該方案的出現形式可能是一個物件、模型、製作指 引、YouTube影片,甚至是現有生物的特徵 (請參閱第2.2,2.3,2.7,3.3和 4.1.5章的 示例。)

4. 漸進製作創意模式 學生大多是新手,缺乏 STEM 必要的技能和知識; 學校也缺乏良好工具和需要的時間。因此,學 校 STEM 理應與專業工程過程有所分別。學校教育不應只依賴傳統工程模式。我特意為年輕新 手學生量身制定了一個 “漸進製作創意 的 STEM 教學模式”。它採用上述 “方案引發”模式, 引導學生通過四個遞進的階段 (即 複製、模仿、增量和轉化) 發展製作的創意(請參閱上表中的 說明)。 這樣,新手也可以跟隨已有的的方案輕鬆起步,先熟悉它學習它,然後嘗試改善它及轉 化它,並最後創作出新的發明。(相關教學示例,請參見第 2.2,2.3 和 2.7 章。)

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


5.創意行動研究模式 此模式為學生的創造力「自主學習」,提供了一個重要的框架。首先,學生找出他們希望解決的一 些在日常生活中遇到的問題,然後設計一個解決這些問題的行動計劃。根據Sawyer (1995, 2000) 的 理論,不僅在行動前的設計時需要創意,在行動期間和之後也需要創意及可以發展創意。 在行動中 出現的創意是即興的、自發的、當場的和計劃以外的。 在行動後的反思過程中,學生可能會領會到 新的學習,並展望未來的延伸及新的發展。這些都是行動後出現的創意。(該模式的實踐和評估在第 2.6和3.4章中有詳細介紹。)

6.自主創意改進模式 但是,對於自主學習的新手來說,以上行動模式可能過於困難。因此,我開發了另一項比較容易跟 循的方法,幫助所有學生在STEM中進行自主創意學習。首先,我翻譯了Cropley的創意方案診斷量 表(CSDS)(Cropley & Cropley, 2010,請參閱第3.5章),供學生自我評估其STEM產品的各種創意特徵。 學生可以根據自我評估量表的結果,定立他們下個階段的學習目標 (即改良其產品的方向),然後重 新進行設計和製作。此改良過程可以重複多次,直到STEM產品的自我評估結果令人滿意為止。除 了產品評估,學生還可以自我評估STEM過程 (使用第3.5章中的工具) ,以改善其過程中的創意學 習。使用類似的方法,學生可以在STEM活動中 持續自主地改進創造力發展。 (請參閱第2.2章有關 彈射器製作的教學示例。)

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


總結與展望 本章相當全面地介紹了「 鄭氏多元創造力培育的 STEM 教學模式」,包括它六個子教學模式以 及其眾多教學的方法。首兩個 子模式可以幫助教師在 STEM 教育中設定學習目標和評估目標; 而其他的子模式則告訴教育工作者在 STEM 中培育創造力的不同活動設計及教授方法。最後兩 個子模式進一步建議老師如何指導學生在 STEM 中進行自主創意學習。本書的其他章節提供了 更多示例,並會對此教學模式其作進一步的討論。

備註: 如在報告或出版中使用相關理論或教學方法,請作以下引述: 鄭慕賢 (2020) 。在STEM + A中培育創造力的教學模式及方法。 鄭慕賢等(編註)“透過跨學科的 STEM + A學習發展創造力”( 電子書,第3.1章) 。香港教育大學出版。中國:香港。 Cheng, V. M.Y. (2020). Models and Approaches for fostering creativity through STEM+A. In M.Y.V. Cheng et al. (Eds) Developing Creativity through STEM+A learning (ebook, chapter 3.1, Chinese). Published by The Education University of Hong Kong. China: Hong Kong.

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


3.3 Re-conceptualize Creativity in Music, Inspired by Technology 從科技引發,反思現今教育裏的音樂創意 梁智軒 博士 科技發展日新月異,無論各行各業或日常生活都離不開科技,而科技在音樂方面尤其重要。筆者 積極推動運用科技的音樂創演教學活動,亦不時反思科技在音樂上的角色及定位。 筆者相信每人都有音樂的能力,亦有所謂音樂的本能,能夠以音樂去表達自己。傳統的教育制度 卻局限了發展我們音樂本能的活動,主要成因是19世紀把音樂創作、表演及欣賞三者專門化及 分割。作曲家的任務是創作音樂,把作品記錄於樂譜上,再由演奏家看着樂譜,把動人的樂章演 奏給觀眾欣賞。這一個流程,在這二百年間並沒有太大改動,已經成為音樂界的恒常流程。這樣 導致西方音樂教育,主要以作品為主導的教學方法,較多以音樂欣賞的活動去學習音樂知識,創 作及演奏活動則相對較少。加上音樂活動,例如管弦樂團及合唱團,主要為表現較優秀的學生服 務。沒有一定樂器或聲樂基礎的學生,在有限的資源環境下,大多沒有機會參與這些寶貴的音樂 訓練。結果,音樂的創作及演奏活動,只留給有才華的學生。其他學生只能夠成為音樂的消費 者,安坐於音樂廳欣賞音樂,並沒有機會參與創作的過程。 如今,科技的引入讓音樂教育改變,讓更多沒有任何音樂背景的人都可以創作音樂。縱使科技並 不一定適合所有的音樂活動,它仍然有着不少優勢。學者Dammer (2013) 曾指出:第一,科技為音 樂素材,例如音高、節奏及媒介,提供更大的控制性,簡化了學習樂器的過程,可以即時發出準 確的音高,減省學習運用樂器的時間;第二,它能夠更容易取得音頻的實現(如MIDI),並且能夠 提供無限的音色可能性,讓音樂創作的過程,包括創造、聆聽、反思及修正,能夠更有效及快速 地完成;第三,它提升了音樂的流動性,例如使用平板電腦;第四,它提升音樂的可達度,已經 儲存的作品可在雲端中分享及存取。

Copyright © 2020, Leung Chi Hin. All Rights Reserved.


音樂的創意與以前不一樣,不再局限於個人的創作。作曲與演奏的結合,將會捲土重來,成為新的 趨勢。讓這兩個不應割裂的部份,重新放在一起,互補不足,更有效地運用適切的演奏技巧達致音 樂的創作目標。再者,小組的創作活動能夠為創作帶來火花。傳統的古典音樂作曲家,例如貝多 芬及海頓等,他們就是作品的唯一創作人。他們的工作就是把每一個樂器妥善地組合,無論是音 高、節奏、音色、發音法、織體及力度,他們都要仔細地安排,把其構思放進精細的五線譜內。過 程中,大多不需要任何合作,是非常個人化的音樂創作過程。相反,流行樂隊的創作方式就大有不 同,例如披頭四樂隊的作品就是一種協同的小組創作。通過不斷的嘗試、即興演奏及討論而產生的 音樂作品,每次都能表現更大的突破,打破傳統的框架,為其作品帶來獨特的結果。 這正好符合了Hugill (2012) 的數碼音樂素養,科技為音樂人帶來全新的方向,其素養包括聽覺意識 (Aural awareness)、批判性思考(Critical judgement)、音樂能力(Musical literacy)、合奏能力(Ensemble abilities)及創意(Creativity)。所以,科技對於整個音樂教育尤其是創作帶來了很大的衝擊,與此同時 亦能夠給予無限的可能性並提供較低的門檻去創作音樂。

參考資料 Dammer, R. (2013). Capitalizing on emerging technologies in composition education. In M. Kaschub, & J. Smith (Eds.), Composing our future: Preparing music educators to teach composition (pp. 201-210). New York: Oxford Uni versity Press. Hugill, A. (2012). Musicianship in the Digital Age. In A. Bromn (Eds), Sound Musicianship: Understanding the Craft of Music (pp. 52-61). Newcastle : Cambridge Scholars.

Copyright © 2020, Leung Chi Hin. All Rights Reserved.


3.4 Developing Teacher Creativity for STEM education Dr. Cheng Mo Yin Vivian What is teacher creativity? Every day, teachers need to generate new and useful ideas in their teaching work, which include designing activities, instructions, and assessments and finding ways to solve various types of problems in classroom and school (Cheng, 2002, 2018; 鄭慕賢, 2002). As suggested by Ambrose (2004), most of the time, teachers are in need of adaptive creativity (i.e., flexibility) instead of innovative creativity (i.e., novelty). This chapter illustrates some methods to increase teachers’ flexibility in designing STEM tasks. Creativity is not only for enhancing teaching effectiveness, but also a kind of self-actualization and healthy development of teachers, as suggested by Maslow (1962). Designing a STEM task. No matter which curriculum model is adopted, STEM teaching needs to begin with a good STEM task. In designing a STEM task, teachers need to consider the challenge (the problem to be solved), the constraints (e.g., the time and materials provided), the criteria (for assessment), the knowledge/skills that students possess, and the possibilities for solutions (are there many possible solutions?). See an illustrative example for catapult in Figure 1 below. For setting the challenge, a STEM task may have an open goal or a competitive goal. A typical competitive goal is to make something that can run at the fastest speed, shoot farthest, or keep the lowest/highest temperature, etc. Whereas an open goal need not involve any common measurable and quantifiable objective. See the examples in Figure 2. Common constraints in STEM activities are the limitation of materials, tools, time, money, or science knowledge/skills of the students. A good STEM task is one in which average students can generate many different interesting solutions, i.e., having a large solution span. To achieve this, teachers need to strike a critical balance between constraints and possibilities and between student knowledge/skills and task challenges.

1. Challenge: Make a catapult 2. Criteria - Novelty + effectiveness (shoot farthest away) 3. Constraints- Using materials already inside this lab; 20 minutes 4. Knowledge related- Force, lever principle, energy change ,material 5. Possibilities- Diff materials, diff mechanisms

Figure 1. Five things need to be considered in designing STEM task

Figure 2. Types of goals and constraints in STEM tasks

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


There are several approaches for developing STEM tasks. First, teachers may transform an old STEM activity into a new one. If not, teachers may consider starting STEM activities with an issue/theme/problem, a subject topic/content, a tool/skill, or even a solution from real life or YouTube video. These activities will then nurture problem-driven, knowledge-driven, tool-driven, and solution-driven creativity (see Chapter 3.1 for their explanations). Below shows some examples of them:

1. Transform old STEM activity into new one( e.g. Egg-drop model making) Contextualize the problem How to help spaceship to land on Mars safely? What can the eggdrop activity inform this issue? What other real life problem this activity can inspire?

Finding alternative methods instead of how to make a cage to protect the egg, try to change the pathway of the egg.

Raindrop, orange, leave, bird, ball, frog, spider, etc. would not be damaged when fallen down. Try to learn from them to invent a method to prevent the egg from being damaged.

Redefine the problem instead of adding things on the egg; teachers may ask students to change the ground to reduce the hitting force

For creativity in testing, develop new testing methods that would not waste eggs.(e.g., to replace the egg with water balloon with a hole, a piece of plasticine/ biscuit/ empty drinking box/loosely combined LEGO block/watch in a think bag/etc. )

Substituting. Change from dropping egg to dropping bean curd (tofu)

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


2. Develop STEM tasks from a problem/ issue. It is the most common method teachers used. Starting from a problem/ issue theme, teachers adopt the engineering design process model or the creative problemsolving model, guiding students from problem-finding to problem-solving through designing, making, testing, and selling. The problem may be a toppling chair, hill fire, earthquake, global warming, living on Mars. Sometimes, a popular film may also be a good start. Start with a daily problem‌

Start with a film‌.

3. Develop STEM tasks from a solution. STEM works do not necessarily start with a problem; they can also start from an existing solution. It aligns with the bottom-up engineering suggested by Cropley (2015). The solution can be in the form of YouTube videos, real objects, prototypes, etc. In bionics, the solution may even be borrowed from living things, transforming their characteristics and survival strategies into human inventions. See Chapter 2.2, 2.3, and 2.7 for more examples. Imitating from the YouTube video of a flywheel toy

Transforming from a WEDO crocodile

Learning from the sliding locomotion of worms

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


4. Developing STEM tasks around a subject topic/concept. To integrate STEM into subject curriculum, this method is most useful. Around a teaching concept/ topic (e.g., ultra-sonic/ heat expansion), teachers first introduce its properties and its existing applications, then asking students to suggest further applications of these properties (see Figure below). Another method is asking students to invent something by forceassociating the topic/concept (e.g., magnet and metal) with daily items or activities. These two approaches are useful in developing knowledge/ concept-driven creativity. Design STEM activities around the properties of Ultra-sonic

Design STEM activities around magnet by force associating with daily items

5. Develop STEM tasks around a technical tool. Sometimes, teachers wish to do some activities around specific STEM tools. For example, focusing on drones, teachers list out all the attributes of the drone and then brainstorm tasks around them. Another method is to force associate a drone with some subject contents. In the present STEM initiative, this approach is most popular in school and extra-curricular activities. Brainstorm around its attributes

Forced associate with each subject/topic

Copyright Š 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Reference Ambrose, D. (2004). Creativity in teaching: Essential knowledge, skills, and dispositions. In Creativity Across Domains: Faces of the Muse (pp. 281-298). Lawrence Erl baum Associates. Cheng, M.Y. V. (2002). Creativity in teaching - Conceptualization, assessment and resources. Unpublished doctoral thesis. HKBU. Cheng, M.Y. V. (2018). Consensual Assessment of Creativity in Teaching Design by Support ive Peers—Its Validity, Practicality, and Benefit. Journal of Creative Behavior, 52(1), 5-20. Cropley, D. (2015). Creativity in engineering : Novel solutions to complex problems (Explorations in Creativity Research). Maslow, A. H. (1962). Creativity in self-actualizing people. In A. Maslow, Toward a psychology of being (pp. 127-137). Princeton, NJ, US: D Van Nostrand. 鄭慕賢編著 (2002):《開發教學創造力》,香港明窗出版社

Reminder: If using the teaching designs or development methods in publications or presentations, please quote the source and use the following citation: Cheng, V. M.Y. (2020). Developing Teacher Creativity for STEM education. In M.Y.V. Cheng et al. (Eds.) Developing Creativity through STEM+A learning (ebook, Chapter 3.3). Published by The Education University of Hong Kong. China: Hong Kong.

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


3.5 Self-directed Real-life STEM Problem Solving Dr. Chan Man Ho

Self-directed learning. In STEM education, self-directed learning (SDL) is a very common way to learn science and technology. Generally speaking, SDL can be defined as “any increase in knowledge, skill, accomplishment, or personal development that an individual selects and brings about by his or her own efforts using any method in any circumstances at any time” (Gibbons, 2002, p.2). In other words, SDL is a process of personal construction of knowledge that utilizes and encourages the development of metacognitive skills. Learning STEM through SDL involves self-understanding, self-management and self-regulation. Our course: Creativity for/in/on Action. In particular, one of our courses “creativity for/in/on action” requires students to invent or create some new things on their own. Students are required to find a real-life problem and try to create something via STEM methods that could solve that problem. The new things created could be tangible (e.g. a new tool) or intangible (e.g. a new software). This is self-directed, real-life STEM problem solving.

After defining the problem, students are required to design a prototype to solve the problem (the stage of “creativity for action”). They have to plan and assess what they need to design that prototype, including the knowledge and techniques required, materials needed, experimental methods, etc. Therefore, this process includes self-management and self-regulation. Besides, some knowledge or techniques required might be beyond their existing knowledge and techniques, which involve self-understanding. They have to decide what they have to learn or what existing knowledge they have to use. These processes require a combination of divergent and convergent thinking (Cropley, 2006). When they are designing or testing the prototype (the stage of “creativity in action”), they might face failures and they need to change their design continuously. This is a kind of engineering design process.

Copyright © 2020, Chan Man Ho. All Rights Reserved.


Through this process, students can evaluate and reflect on their design process, which can construct their knowledge and develop their metacognitive skills. Finally, students are required to write essays to summarise their projects and construct their own personal creativity theories based on their reflection. Therefore, the self-directed, real-life STEM problem solving approach enables students to learn STEM through SDL and develop metacognitive skills. The self-directed, real-life STEM problem solving approach mentioned above is very close to the conventional problem-based learning (PBL). However, the former one involves metacognitive skills development while the latter one mainly focuses on solving the problem encountered. Generally speaking, the abovementioned SDL process involves conventional PBL. Evidence. Based on the students’ evaluation and the reflective assignments submitted by students, the goals of the self-directed, real-life STEM problem solving approach can be achieved. First of all, all students could finally create some new things that could solve the defined real-life problem. Through presentations, they could identify the knowledge or techniques required and perform some experiments to test their design prototypes. For example, one group of students would like to design a “multi-functional box” for artists. At the very beginning they decided to use wooden boards to make the box. However, they quickly found that they didn’t have the required skills to make the wooden box and the resulting box would be too heavy. Finally, after a wide search and investigation, they decided to use a particular type of cardboard to make the box. (see Figure 1 and 2)

Figure 1. Multi-functional box for artists (prototype)

Figure 2. Final product

Another group of students wanted to design a tool to minimise the sound in playing Mahjong because they love playing Mahjong very much but the noise of playing would affect the others. At first, they considered to focus on the Mahjong table to minimise the noise. However, their classmates pointed out that the collisions of Mahjong are the most important problem. After that, they put their focus on the Mahjong. They used rubber bands and old newspapers to wrap the Mahjong to minimise the sound due to collisions of Mahjong.

Copyright © 2020, Chan Man Ho. All Rights Reserved.


After their presentations, students commented on the problems of using rubber bands and found that others can recognize the particular Mahjong from the newspapers wrapped outside the Mahjong. That group of students then performed several tests and investigations, and finally they decided to use the materials that make the “red-white-blue bag” to produce the wrapping tool for minimizing the noise. They also used sound level meter to test the noise produced to check their products. Therefore, they found the problem, solve the problem and evaluate the problem on their own. (see Figure 3)

Figure 3. ‘Mahjong Bumpers’ for ‘Silent Mahjong’ Reflection and metacognitive development. Finally, students could successfully reflect on their design processes and construct their own creativity theories. For example, one student mentioned that the “trial-and-error” approach is the most important way to develop creativity. He could improve the design and flourish the project ultimately through the failures. He also mentioned that his experiences in the project are consistent with Houghton’s theory, which states that “working out something” is not exactly equivalent to working out some confirmed or bright ideas on the project proposal (Houghton, 2004), but includes some re-design processes. Another students reflected on his learning: “[h]aving an open mind will put yourselves into the world of

new ideas. In the presentation, we received opinions from our classmates and lecturers. The notes were written down carefully and precisely and we gathered to discuss the possibility behind. What we want to do is to listen to the voices from others, who are the potential users, and improve our design through trials. Truly, open mind may not guarantee you to reach 100% success. But it can help yourselves to discover more in the process when the product is being promoted and actualized in the real-life situation.” The reflection made by students can help them develop their personal theories of creativity and facilitate their metacognitive development. One student mentioned the most important element in his reflection about developing creativity: “…… creativity is allowed when one is given space and autonomy to a large extent to create something original and useful.” This shows that giving platform for them to create may be one of the best methods in creativity development.

Copyright © 2020, Chan Man Ho. All Rights Reserved.


Conclusion We believe that the self-directed, real-life STEM problem solving approach is an excellent way to develop STEM skills and creativity. Through the self-directed learning approach, students can construct their own theories and develop their metacognitive skills. The self-directed learning approach will become a very important approach in acquiring 21st century skills. Reference

Cropley A. (2006). “In praise of convergent thinking”, Creativity Research Journal 18(3): 391-404. Gibbons M. (2002). The self-directed learning handbook: challenging adolescent student to excel. San Francisco, CA, Jossey-Bass. Houghton J. (2004). “Cancer Research: The Art of Creative Thinking”, Cancer Biology & Therapy, 3(3), 351-355.

Copyright © 2020, Chan Man Ho. All Rights Reserved.


3.6 Developing C through STEM Learning Assessment 促進創造力發展的STEM學習評估

鄭慕賢 博士 「評估是學習不可或缺的一部分,它可以引導學習的過程,並促進終身學習。」(Earl, 2013, p.25) 但 是, 許多教育工作者擔心考試測驗會扼殺學生的創意。研究 (Cheng, 2008; 2015; 2018) 發現適當地進 行評估是可以促進創造力的發展的。因為評估不限於總結性目的,還可以是有形成性目的,以支持 教與學。參考 Black and William(2009)的「Formative assessment practice 形成性評估策略」模型,本 章提出了幾種在STEM學習中促進創造力發展的 形成性評估策略。請看下表。 「形成性評估策略」模型 (Black and William, 2009)

在STEM學習中, 促進創造力發展的 形成性評估策略: 老師明確告知學生STEM創意的主要評估標準

闡明和分享學習動機和成功標準; 老師與學生討論 何謂STEM創意, 它的標準和範例 幫助學生理解的討論/任務; 老師具體地反饋學生他們在STEM過程和作品的表現 提供推動學生進步的反饋; 激發學生成為彼此的學習資源,互相促 進; 使學生積極地主導自己的學習。

在STEM過程和作品完成後,進行分享及同儕互評,讓學生 體驗各種各樣的可能性,從而激發更多創意 老師鼓勵及助學生在STEM過程和作品進行自我評估,並根 據其结果進行自主學習(self-directed learning)

大多數學校和比賽都使用可量度的效能或表現(例如速度,距離或溫度)作為對STEM作品的評 估。雖然這方法相對客觀及簡單方便, 但這種偏向作品效能(而不是其新穎性)的評估,肯定會對 創造力發展產生負面影響。因新穎性取決於可變性,其要求可引發發散思維,而有效性取決於專業 知識,其要求會引發狹義或聚合的思維。(Puccio, Treffinger and Talbot,1995; Stokes, 2010)因此,為 了在STEM教育中促進創意,我不建議評估偏重客觀效能,尤其是對知識能力弱的學生。在此章, 我介绍了五種不同的促進創造力發展的STEM學習評估方法。 1.開放式STEM紙筆測驗 總結性評估有時也可有形成性的功能(Carless, 2011, 2015)。一較簡單的方法是設立開放式的STEM 纸筆測驗。但是,STEM測驗题不宜只要求一個最終最佳的作品。為了培養不同STEM 元素(包括發 現建構問題、設計、製作、測試、預想作品未來發展等)的創意,測驗應該把STEM各個部分的創 意分開来作評估。老師和學生可以根據評估結果了解以往STEM學習的強與弱項,以改良教與學。 下面是一個範例:

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


2.實作STEM的過程評估 當然STEM更需要 實作評估,我開發了「發散思維習作評估量表」和「促進創造力的STEM 過程評估量表」,以方便進行STEM過程評估。 在形成性評估中,前者鼓勵四種不同的發散思 維,而後者則鼓勵在整体STEM過程中發散思維和聚斂思維的结合。 同樣地,教師和學生可以 根據評估結果來了解以往STEM過程的強與弱項,並為接下來的STEM教授和學習定立目標。

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


3.實作STEM的作品評估 在比賽中,通常由專家評委對STEM產品的創意進行單一项的共識評估。可惜,這種方法幾乎沒有 形成性評估功能。在學校,教師宜先識別創意作品的許多細節特徵,並構建他們的評估量表。 教 師可参考以下三個不同的創意作品評估量表。首先,「創意作品語義量表Creative Product Semantic Scale」(O’Quin &Besemer,1989)適合用来簡單地評估—般(即不一定是STEM)作品的創意。而「學 生作品評估表Student Product Assessment Form」(Reis & Renzulli,1991)則更適合評估整個項目的創 意。 在這裡,我翻譯了它們的部分評估準則供大家參考。

Cropley and Cropley (2010) 開發了「創意方案診斷量表Creative Solution Diagnosis Scale」(CSDS),供 大學學生自我評估及診斷工程產品的創意。Cropley,Kaufman(2012)進一步證明了CSDS可以由非專家 者進行評級。我翻譯了CSDS來評估STEM作品,並使用它來實踐「自主創意改進」 的STEM教學模 式」(參閱第3.1章)。在此模式,學生先製作第一個STEM作品,然後運用CSDS來評估它。學生可 以從評估結果中找出自己的弱項,並針對它來定下改良目標和策略。此 「自主創意改進」 模式可以 不斷循環地進行,直到學生自己都覺得其成品的改良已達到「飽和」為止,亦即是該量表中的大多 數項目被評為滿意。(下表是已翻譯的CSDS,藍色代表第一個作品的評級,而紅色是改良後第二個作 品的評級。 )

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Chinese translation of Cropley’s “Creative Solution Diagnosis Scale (CSDS)” By Cheng, Mo Yin Vivian

(by Ng Hoi Yan)

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


4.STEM課程後的學習表現評估 除了要評估個別STEM 活動的學習,教師也需要為整個STEM課程作出學習表現評估。下方左邊 是 來自 美國高等學院協會 的創意思維價值的評估準則及它們的最佳水平的描述。 可是,這量表的內 容並是不專門為STEM學習而設計。下方右邊是我在任教科目「Creativity Development through Robotics」中所開發的課程學習表現評估表。教師可作參考。

5.STEM課程後的 學習成效評估 為了評估學生在STEM課程的學習成效,教師可以考慮進行一個課程前後的問卷調查,來了解學生 的創造力發展, 包括創意、解難和STEM各方面的知識、態度、能力與習慣的轉變。如果你的STEM 教學成功,相信會有更多學生覺得「喜歡成為發明家」或「將來可以成為發明家」。以下是兩問卷 樣本項目:「我喜歡成為一名發明家」;「我相信只要努力工作,我就能成為發明家」。基於這些 前後問卷調查的差異,教師可以了解STEM課程對學生的影響,尋求下一階段的改善或課程编排。 為了解學生在整個 “Creativity and STEM/STEAM” 副修課程内 的學習成效,我們也有在學習前和後 發出調查問卷。初步結果令人鼓舞,下表是前後测的t-tests檢驗結果。我們發現本副修課程,令 學生有較強的 ·創造力相關的信心和能力 - 包括有信心成為具創意的人; 能展現具創意的日常設計和教學。 ·創造力相關的習慣 - 包括时常常想出新穎的設計和奇怪的想法、仔細思考及想像未來的變化。 ·STEM的學習動機 - 包括對STEM有更大信心、興趣、及價值感。 ·動手解難的能力和習慣 - 包括研究和定義新問題、設計、製作和測試。

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


備註: 歡迎使用本章建議的評估設計及教學方法。如在書面或出版中使用相關理論或評估表,請作以下引 述:

鄭慕賢 (2020) 。促進創造力發展的STEM學習評估。 鄭慕賢等(編註)“透過跨學科的STEM + A學習發展創造 力”( 電子書,第3.5章) 。香港教育大學出版。中國:香港。 Cheng, V. M.Y. (2020). Developing Creativity through STEM learning Assessment. In M.Y.V. Cheng et al. (Eds.) Developing Cre ativity through STEM+A learning (ebook, Chapter 3.5, Chinese). Published by The Education University of Hong Kong. China: Hong Kong.

Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


Copyright © 2020, Cheng Mo Yin Vivian. All Rights Reserved.


4.1 Student STEM+A works in the 8 courses 4.1.1 Creativity in STEM Invention 4.1.2 Creativity in Music 4.1.3 Creativity in Teaching 4.1.4 Creativity in Action 4.1.5 Nurturing Creativity through Science and STEM 4.1.6 Nurturing Creativty through Visual Arts-related Activities 4.1.7 Creativity through Robotics 4.1.8 Creativity and Human Development 4.2 Student Activities Report 4.2.1 Dream School 4.2.2 STEAM workshop 4.2.3 Science Museum and STEM 4.2.4 Cultural museum and STEM 4.2.5 Robocon 4.2.6 Microbit design competition 4.2.7 STEM in SEN schools 4.3 Other T and L Supporting Resources 4.3.1 YouTube videos or STEM+A making with classification of topics 4.3.2 STEM+A book and web referneces 4.3.3 Supporting local institutions


4.1. Student STEM+A works in the 8 Courses

4.1.1 Creativity in STEM Invention 4.1.2 Creativity in Music 4.1.3 Creativity in Teaching 4.1.4 Creativity in Action 4.1.5 Nurturing Creativity through Science and STEM 4.1.6 Nurturing Creativty through Visual Arts-related Activities 4.1.7 Creativity through Robotics 4.1.8 Creativity and Human Development


4.1.1 Creativity in STEM Invention Teacher: Mr.Chan Ping Man

Figure 1: Tsang Yuk Chui using a 3-D printer to make her design a reality.

Figure 2: Student group project on the history of the invention of glass on LINO board


Figure 3: Student Li Wai Kit designed a 2-way tap using 3-D drawing and printing.

Figure 4: Laundary rack designed by Lam Tung Hung using 3-D drawing


4.1.2 Creativity in Music

Teacher:Dr. Leung Chi Hin

Creative Music with STEAM Elements Description

A group of 5 to 6 students will collaborate to build an electronic instrument by using electronic building blocks and coding software. Each group will co-create/improvise a piece of music which is tailor-made for the electronic instrument by using relevant contemporary composition techniques. Examples of group works are as follows: Group A: Journey to the Stars Journey to the Stars is the story of the adventure of an astronaut in the universe. The music depicts the rocket launch, the long journey in space and the landing on a mysterious planet. littleBits electronic building blocks, Max 7 and inside piano were used in this piece of music. Group B: Life and Death – A Journey of Life Life and Death – A Journey of Life depicts the life journey from birth to death. This piece of music is a journey of happiness, sadness, hopefulness and frustration. littleBits electronic building blocks, GarageBand and arranged melodies were used in this piece. Group C: Aliens Attacking the Earth Aliens Attacking the Earth is a fictitious piece set in the post 21st century when a large number of aliens invaded the Earth. The music depicts the invasion of aliens, the battle between aliens and humans, the loss of the humans and the aliens ruling the Earth. littleBits, Max 7 and Logic Pro were used in this piece. Video excerpts: STEAM Education in Music: Research, Teaching Design and Resources https://youtu.be/cs1pWHxj4vw?t=5

(Student works in video: Chan Hoi Yi, Chan Tsz Kit, Chan Ho Chun, Cheung Che Too Aaron, Cheung Ho Yan, Kam Kwan Wai, Leung Wing Yan, Ng Ka Yi, Ng Lok Yan, Tai Ying Ying, Tam Pak Huen, Tsui Hok Yin, Yau Hang Chuen, Yu Wing Ha, Wong Chi Wai)


4.1.3 Creativity in Teaching

老師:鄭慕賢 博士

這個科目旨在發展學生身為教師的教學創造力,當中包括STEM教育上的教學創意。下面是一些學 生的習作及作業,包括(1) 把STEM應用於創意課室管理, (2) 舊STEM活動的改造與老師的解難過程, (3) 圍繞一個簡單主題的跨學科活動, (4) 透過AR技術發展創意教學。

(1)把STEM應用於創意課室管理 試針對一個學生的不正確行為:學生在課堂上擅自調位 (Chan Yin Yiu ) 1)E-learning 網上學習及課程: QR code每個學生都有一個獨特QR code。老師在上課前,以電子工具完成 QR點名。

2) 航拍: 每次拍攝上課的座位,老師下課後查看 紀錄,找出坐在不同位置的同學。

課室管理 的創意方案 (陳少雯, 2018-2019) 首先,我會講述五個課室管理及處理學生功課問題的創意方法。 方法一:「無聲無息」程式軟件 每個學生的桌子上會有一個螢幕,老師的桌子上同樣有一個螢幕。這個 螢幕有很多功能,只有老師桌上的螢幕是可以控制的,學生的螢幕只供 觀看而不能控制。當老師要求個別學生答問題時,老師可以在自己桌上 的螢幕選擇個別學生名字的按鈕,只要一按,那個同學桌上的螢幕就會 出現紅燈 ,表示那個同學需要答問題。 方法二: 計時炸水彈 (STEM question: How to make such a water bomb? ) 計時炸水彈的做法很簡單。總共有三層,最外面兩層沒有水,最入面那 層載滿水。 先準備一個載滿水的氣球,然後用另一個氣球包着那個載滿水的氣球, 最後再用另一個沒有裝水的氣球包着剛才準備好的那兩個氣球。 每個學生都會獲得一個計時炸水彈,必須把它放在桌子的右上角。當有 學生在課堂上不遵守規矩或欠交功課時,老師就會用牙籤刺穿那個學生 的計時炸水彈的最外一層,如此類推。最後一層穿了,計時炸水彈就會 爆炸,那個學生就會全身濕透並連累旁邊的同學。 方法三: 隱蔽密室 (STEM 問題: 如何創造密室?) 每一個課室後方的右邊那個角落都會安置一個隱蔽密室,由玻璃組成並 設有一個空隙供入面的學生呼吸,密室內有一桌一椅,可以容納一個學 生。如果學生在課堂上隨意喧嘩,製造噪音,嚴重騷擾其他學生及老 師,以致影響課堂進度,老師就會邀請那個學生進入隱蔽密室內上課。 在隱蔽密室內,同學仍然可以聽到外面的聲音,而外面的人則不會聽見 密室內的聲音。


方法四: 蜘蛛絲黐住支樹枝 (STEM 問題: 如何模仿蜘蛛網?) 每一個老師都擁有一卷蜘蛛絲仿製品(可用泥膠製作)。如果有學生不能 控制自己的嘴巴及四肢,老師就會化身成蜘蛛俠,將蜘蛛絲仿製品黐到 那個學生身上。那個學生無論走到哪裏,身上的蜘蛛絲仿製品也會黐到 周遭的物件,令那個同學動彈不得,只能乖乖地留在原位,手腳也有機 會被蜘蛛絲仿製品黐作一團。 方法五: 功課錄音機 (STEM 問題: 如何製作一個自動功課提醒器?)每個學生在入學前都會 獲得一個功課錄音機,老師會請家長把功課錄音機掛在家中的大門上。 每當學生回到家,一打開家中的大門,功課錄音機便會感受到震動,自 動播出「做功課歌曲」,提醒學生要先完成功課才可以休息及玩樂。 (儘管以上內容只是一些瘋狂的想法,但我相信經過一番改造,它們也 許有一天會有用的 :))

(2) 舊STEM活動的改造 與 老師的解難過程 了解感應器 - 從日常生活例子引發興趣,並透過頭腦風暴法構思簡單的應用。 學生簡報:Wong Ching San, Zhong Shan Shan 這兩位學生選取了《感應器》作為此次功課主題,並且介紹和分析感應器在日常生活中有什麼例 子或是作用。 他們相處如何透過感應器引入在教學中,以下為例子:


在簡單的舊活動上增加挑戰 : 例如在LittleBit賽車中增加坡度和轉彎處。但隨後這位老師遇上了一 些意想不到的困難,下面是她記錄自己的整個創意解難過程。 教學上的創意解難 (黃澄珊) 在STEM的日常教學中,老師經常要解決不同的問題。處理障礙和挑戰是工作生活的常規部分, 克服困難並非易事。如何使用創意解決問題?美國學者 Parnes提出「教學上的創意解難 Creative Problem Solving (CPS)」(1967),由了解問題入手,跟隨六個步驟,先運用擴散式思維,想出不同 的潛在解決方案及可能性,再運用聚斂式思維,分析及選擇出較重要或可行的元素。整個過程由 了解問題出發,先闊後窄,有效地看到問題的全面並找出合適的解決方法。 以小組匯報 littleBits 賽車比賽為例,比賽旨在讓學生學習感應器 (sensor)的原理及應用。比賽前老 師向學生提供了賽車的基本結構及不同元件,學生只需要選擇一種感應器及依照基本結構組成車 輛便可。但過程中亦會有很多因素導致賽車不能向目標方向移動,此時老師就可以利用「教學上 的創意解難(CPS)」去解決問題。

在每一個步驟中,學生都會運用擴散式思維列舉不同的潛在方案及可能性,方案越多越好。例 如第四步「發現構想」中,會思考如何增加賽車向前行駛的推進力,運用第二步 「發現資料」 所找到的因素,思考能增加賽車推動力的方法。再運用聚斂式思維,在第五步「發現解決方 案」中測試並選擇合適的方案。透過這樣的創意解難步驟,學生就能有系統、一步一步地找出 解決問題的方法,同時培養學生的五力——流暢力、變通力、獨創力、精進力及敏覺力。 經常使用「教學上的創意解難 Creative Problem Solving (CPS)」,能使學生在遇到問題時,自動 地運用此思維模式。但學生使用時需要思想開明,願意接受不同的可能性,才能產生眾多不同 的想法。另外,老師對於解難設計的回饋亦非常重要,老師可因應學生的能力提供引導及新角 度的衝擊,注意切忌批評,以免學生因害怕答錯而放棄獨特的想法。


對教學創造力的看法 教學需要創意,教學創意並不代表要去創造一種全新的知識,而是利用創意把現有的知識以有趣 的手法傳授給學生。老師的工作有別於其他專科職業,例如醫生、警察。雖然大家都有必須遵從 的守則(老師要遵從學科知識,醫生要遵從醫學知識,警察要遵從法律),但教師這份工作卻多 了一點彈性。因為我們面對的是一班率真的學生,學生上課的表現往往與老師的教學表現掛鉤。 若老師在教學時能加入專業創意(Professional-C)去傳授知識,學生的上課時也會變得投入積 極,反之亦然。加上每一班學生對教學的反應也有所不同,這時候更需要老師運用適應性創意教 學(Adaptive Creativity), 配合五力去設計合適的教學。 創意教育與傳統教育有很大的差異。創意教育「強調知識的創造及運用,同時重視擴散性及綜合 性思維,強調好奇、探究及冒險精神,重視了解事物的演變及其未來的可行性」,相反,傳統教 育「強調知識背誦及理解,只注重聚斂性思維,重視服從權威、循規蹈矩,注重了解現有事物」( 鄭慕賢,2002)。兩者不同的特色會影響培養學生創造力的成效。我認為欠缺探究及冒險精神最會 扼殺創造力。不論是老師或學生,害怕提出具獨創性的觀點,害怕與眾不同,害怕做一些沒有人 做過的事,這些想法會抑壓了新的東西出現,減少了未來發展的可行性。

(3) 圍繞一個簡單主題的跨學科活動

(陳孟琪)

第一部分:出奇蛋教學 流程圖/網狀架構

透過這個流程圖,希望找出出奇蛋可發展的教學內容。 流程圖是用來紀錄所有與主題有關的次要概念,在這些 之下要列出與主題緊緊相扣的內容,從而找出主題式教 學的目標與學習觀念(Herr, Libby-Larson, 1999)。 我從中發現出奇蛋的一大特色是「食+玩」, 無論食 完玩、玩完食、邊食邊玩,小孩子都會很開心。另外, 我發現到朱古力蛋也像雞蛋一樣,會碎,甚麼會融掉, 所以可以讓學生想一想在包裝和運送方面有何妙計。我 認為蛋是常見的事物,小至鵪鶉蛋,大至建築物。但在 中小學的數學中為何沒有教過蛋的面積? 請教了讀數 學教育的朋友,他指因為不太常用、也太難計算上窄下 寬的蛋型(近似橢圓面積是有公式)。 我就上述部分科目的想法,運用創意解難、強迫思考想 象力的創意策略。 希望把創意運用在解難中,把表面 看似不相關的知識連結起來,成為新意產物。我嘗試與 學科本身聯繫,最後發現更多的是與生活有關的學習。 例如:探討朱古力為何會融;試製作中空結構的出奇 蛋;認識產品背後的血汗工人等等。從小朋友喜愛或知 道的事物(出奇蛋)入手,延伸到學習內容,能有效引 起學習動機。在構思如何把出奇蛋與現時的科目結合 時,回想起很多以前的學習內容,但同時我也會受到已 有知識所限制。


第二部分:創意教學的個人反思 以上九個科目的想法,運用了創意解難、強迫思考和想象力的創意策略。 希望把創意運用在解難 中,把表面看似不相關的知識連結起來,成為新意產物。我嘗試與學科本身聯繫,最後發現更多的 是與生活有關的學習。例如探討朱古力為何會融;試製作中空結構的出奇蛋;認識產品背後的血汗 工人等等。從小朋友喜愛或知道的事物(出奇蛋)入手,延伸到學習內容,能有效引起學習動機。 在構思如何將出奇蛋與現時的科目結合時,我回想起很多以前的學習內容,但同時我也會受到已有 知識所限制。有時我常把出奇蛋當成吸引學生注意的東西,有時好像跳得太遠,與現時的課程失去 了連結,而最終放棄該科目的出奇蛋教學。我認為要懂得分辨那個設計是否有助學習,需要很多實 際教學經驗,光是說,總不能見到教學效果。接下來我會反思以下幾點: 反思我的過去有甚麼扼殺了創意? 一直以來學校的作業、測驗,和考試通常有標準答案,我相信教科書是對的,只要把它背下來,考 試寫出來,便算是學懂了。然而,無奈的是很快又會把知識還給老師。我認為背誦是無法幫助我們 內在吸收知識的,知識只會停留在短期記憶裡,只有從做中學,才會比較深刻。 甚麼東西可幫助我發展創意? 首先,我覺得一個能容納創意教學的環境極其重要,我曾到不同類型的機構教畫畫,有些畫廊要求 我製作範作,一筆一劃地教學生臨摹,為了畫給家長看。我覺得這種教學很有問題,教的過程有很 大壓力,每堂都聽到:「我不會畫啊!」學生只懂得抄畫,只停留在畫得像老師的便算是好,根本 沒有空間發揮創意。其後,我又到一間教會舉辦的兒童素描班教畫畫,他們讓我隨心嘗試不同的繪 畫遊戲,沒有規限一定要用某種教學方法。我才覺得這個環境最合適我發揮創意,準備、教學過 程、成果都讓我很享受,學生們亦玩得很開心。藝術對我而言很重要,這是唯一的科目沒有對與 錯,大抵只有好與壞。這培養了我敢於創造不同的事物的冒險精神。其次,閱讀一些兒童創意的書 也很有幫助,可以參考其他國家的創意教學例子,再加入個人教學特色,演變成自己的教學。 取經創意老師的條件: 從Miss To的分享與去她任教學校的參觀中,我發現到成為一個創意老師須具濃厚的研究興趣,要 有創造力與思想,就算錯了,也願意與學生一起找出答案,要親身帶動學生一起學習。其次,要為 學生營造創造的環境條件,願意提供課本以外的解難作業,好讓學生知道書本上的知識不是完善和 萬能的,有時要有更多的探究和思考,才能不斷進步(邵廣軍,2004)。例如Miss To與幾位老師 合作做STEM,更有一間「腦震盪房」給學生。整個氛圍讓學生能產生更多創意。在平日的課堂, 更可熱情地鼓勵每個學生發問,挑戰課本知識。


本課程的啟發: 在課程開初,我發覺所有東西都可以用來教學,例如在crazy teaching video中,我組是以「慢活」 為主題,與組員一起構思教人慢下來的秘訣很有趣!重點的是有同伴合力一起實踐,若這份功課是 個人,恐怕都不能做到這效果。如果在日後學校的工作環境中,只有你一個想發揮創意,但沒有人 支持或跟你一起做,那個動力就會被磨滅。後來見識了不少創意教學的例子,簡單至中文造句,轉 用類比手法讓學生填寫,已經是在培養學生的創意。讓我漸漸發現,平時一些深奧陌生的理論,轉 用另一種教學,如遊戲、戲劇等去演繹月蝕景象,能讓我印象更深刻。我最大的收穫是從其他同學 的專題滙報中取經,印象最深刻是性教育的扮演遊戲,同學把這尷尬的話題化成生動有趣的遊戲, 讓學生參與。整個課程讓我放下傳統教學的思維,這鼓勵著我狂想任何的可能性。最後,是次研習 中,我學會了大膽把想法寫出來。雖不知道所設計的教學結果是如何,我想如果我是學生,應該會 很喜歡非傳統式教學。

(4) 透過AR技術發展創意教學 有些學生探究圍繞AR的創意教學。他們先反思AR在學校的現有用途,透過頭腦風暴法分析它在不 同科目教學上的可能性,然後進行一些動手的嘗試。除了製作AR教材,他們還開展了課外活動。 他們帶30名中學生去文化博物館參觀,並培訓這班中學生創造AR發明。

反思兩間學校中AR的使用 (陳孟琪) 匯知中學數學科:運用AR 把書本上的文字應用題活現於學生眼前。 Aurasma是一個擴增實境的工具,能讓圖片、影像及文字立體呈現, 增加真實感。教師要先把文字 應用題的圖像製成Aura的靜態圖片,學生用Aurasma應用程式在圖片上進行掃描,就會在圖片上浮 現建築物的角度圖像和數值。 評價:教師可運用這工具把相關的教學動畫、影片、圖像、錄音等,透過圖片發放,增加學生的學 習趣味。

青年會書院:運用擴增實境技術輕鬆製作閱讀報告。 把擴增實境(AR)技術運用於閱讀課中。同學在閱讀書籍後會以影視錄像方式完成閱讀報告。優秀 的閱讀報告更會以擴增實境技術上載至互聯網,同學可以利用流動裝置在圖書館或家中瀏覽相關片 段,考慮是否借閱該書籍,是一種另類的閱讀過程。 評價:有助提升學生做閱讀報告的興趣,因為做得好的話能夠被挑選作書籍的AR簡介。 使閱讀報告形式多變,不再是文字,可以是演一場話劇,拍攝影片等等。訓練學生讀、寫、說、演 多種能力。


學生的新式水墨作品: 結合中文科、AR及中國書畫 (王寶琼) 學生需利用擴增實境(AR)技術,透過相機偵察影像的位 置及角度,讓螢幕上的圖像能夠與現實世界場景進行結合與 互動。 教師先準備中二學生認識的詩,題材須與山水有關連。學生 分組進行活動,每組以抽籤形式抽出一首詩來創作,學生可 先討論詩中的內容並繪畫草圖。學生需運用教師提供的物料 如發泡膠、棉花、紙皮等,配合淡墨或濃墨和紙來探索質感 的變化,完成後撕出不規則的形狀。同時運用近濃遠淡的手 法,在新畫紙上拼貼成新式水墨,學生拼貼時需討論如何呼 應詩中內容。 接著學生運用手機應用程式MakAR 編輯器,製作擴建實境 內容,學生利用平板電腦替已完成的水墨作品拍照,把水墨 作品上載到MakAR的編輯平台製作辨識圖,並上載抽中的 詩作為虛擬圖像,完成設置後,當智能裝置的鏡頭辨識到水 墨作品,便會顯示出詩的內容。 請掃描以下的QR Code以觀看影片 https://youtu.be/kMeMeBEiXSg

Tranferring creative learning in this course to extra-curricular activities: (Choi Sze Wai and the United Christian College)


學生使用繪畫軟件-“TinkerCad”及AR軟件Ravvar去介紹可能的未來發明。

< 鳴謝 > 青年會書院, 匯知中學, 寶安商會王少清中學及匯基書院


4.1.4 Creativity in Action

Figure 1: Majong Bumpers’ for ‘Silent Majong’ (Student work:Yu Ka Wai and Chan Wing Laam)

Figure 3: Multi-functional box for artists (prototype) (Student work: Li Hoi Kit and Kong Sze Man)

Figure 5: Vertical magnetic photo album

(Student work: Chan Man Pui, Chan Ho Chun, Lai Ki Wa)

Teacher: Dr. Chan Man Ho

Figure 2: Bumper detacher

Figure 4: Multi-functional box for artists (Final product)


4.1.5 Nurturing Creativity through Science and STEM

老師:鄭慕賢 博士

這裡展示了一些學生的作業,他們的作品以三種不同的方法引發創造力。學生採用了工具引發、問 題引發和方案引發三種方法,來激發STEM學習中的創意。 (有關方法的說明,請參見本書第3.1章)

1.工具引發 〈熱電晶片的研究與發明〉 ( Li Yuk Ting) 意念構思 (強迫聯想法) 我將會嘗試透過強迫聯想法來把熱電晶片(TEG)和日常生活的用品或活動連接起來。為了保持客 觀性,我將會邀請其他人隨意說出一些日常生活的用品或活動,然後再以他們提出的生活物品或日 常活動與熱電晶片(TEG)強行結合起來聯想,希望能構思到新意念。

圖1: 意念構思

圖2: 完成品

設計及研究 把熱電晶片(TEG)能發電的原理套用到杯子裡,把熱電晶片安裝在杯子的內杯下面,內杯的材料 建議是銅,因為銅的導熱性能較好。當熱水倒進杯子裡,來自水的熱能會透過內杯的銅很快傳送到 熱電晶片的熱面,使其兩邊形成巨大的溫差而產生出電能。只要攜帶此杯出外,便能很容易為手機 充電。當手機無電,只要到附近的食肆甚至麥當勞要上一杯熱水並將其倒進這充電杯裡,便能為手


改良 收集其他人對充電杯的意見,有以下需要考慮及改良的地方:安全問題:由於熱電晶片內嵌於杯 底,會擔心清洗杯子時,水漏進杯的零件裡,可能會引致漏電。雖然充電杯能造電,但萬一忘記 帶電話充電線該怎麼辦?針對以上問題,我重新修改了充電杯的設計圖。

2.問題引發 〈老人用藥盒〉(Chan Ka Lam、陳偉瀅 及 梁芷筠) 根據香港中文大學醫學院的一項調查發現,香港獨居長者或無家人同住的年老夫婦數量超過約四 十二萬人,當中不少屬於缺乏家人照顧、欠缺社交網絡的「隱蔽長者」(2012)。這些長者平均患 有三種以上的慢性病,最常見的慢性病為高血壓、糖尿病、心血管疾病和關節炎。每人平均需服 用逾六種藥物,最多的每天更需要服用十七種藥。惟逾六成一的長者未能按指示服藥,包括忘記 用藥劑量、以錯誤方法服藥、自行增減劑量等,因此導致不少隱蔽長者的病情不穩,部分長者的 血壓及血糖更達到危險水平。此外,不少糖尿病長者常混淆餐前及餐後的糖尿藥,這行為可引致 血糖過低甚至暈眩,對於獨居長者尤甚危險。就以上的現象訂立了以下的問題作創意啟發的源頭: 「如何幫助長者解決忘記服藥及錯誤服藥的問題?」

設計「藥物管家」的構思腦圖


從以上選取兩個構思,並進行詳細的設計

以上是第一次和組員一起製作藥盒管家的過程,在這個過程中我們發現藥盒的間隔太少,只能供應 一天的用量。每次打開都會展示全部藥物,加上香港天氣潮濕,這樣藥物容易受潮。因此,為了改 善以上問題,我做了第二次的改良。 第二次我製作了新版的藥盒管家,它可以提供使用者三日的藥量。它的功用雖然與上一個相同,但 是每一個間隔裡面有一個轉頭,每當到吃藥的時間,特定間隔的轉頭會搖擺,把藥掃出去,藥會通 過吸管通道傳送到外面,可以直接拿藥。它保留了之前會震動、播放音樂提醒和閃燈功能,依然可 以多方面提醒使用者吃藥。 為了讓藥物盒智能化,我們決定使用Micro Bit製作藥物管家。最初,我們有兩個主要的想法:彈射 器藥物盒和Micro Bit藥盒。 彈射器藥物盒 的主要材料為紙皮、膠羹和雪 糕棍。在我們的構想中,彈射器藥物盒將擁 有計時功能。只要到了使用者服藥的時間, 藥盒便會自動打開,並利用雪糕棍將藥物彈 射出來。 創作過程: 首先,我們利用普通的紙盒,分 割成不同的藥格。然後,我們包裝了藥盒, 並為每一格標示出時間,分別為:早上、中 午、晚上。最後,將藥盒的蓋子連接到伺服 馬達。每當到了服用藥物的時間,伺服馬達 將轉到90度,自動打開藥盒。


接下來,我們更利用Micro Bit編寫了定時響鬧、計時、馬達旋轉、圖案顯示的功能。每天,使用者 可以將藥物放進不同的格內,然後同時按下A和B按鈕。「藥物管家」便會自動計時,如4小時。一 到服藥的時間,藥盒便會自動打開,Micro Bit板會顯示「服藥時間到」。隨即,音樂響起,可方便 有眼疾的使用者。同時,連接藥物盒蓋子的馬達會轉到90度,自動打開該藥格。另外,「藥物管 家」的蓋子將設計成透明,可清晰地看到藥物的外觀,以防錯誤服用藥物。

3.方案引發 〈向螞蟻學習〉 (by Yu Ka Wai 及Chan Kai Yin) 螞蟻的特質 觀察螞蟻的方式十分多,我們可於一般公園中觀察螞蟻的行走方式及路徑等,而在市 面上亦有不少透明的螞蟻巢穴可供選購,更有利於觀察。透過觀察螞蟻,我們能夠發現他具有以 下四種特質: 1. 以六足行走 2. 所有螞蟻行走的路徑一致 3. 群體生活 4. 力大無窮,能夠搬運重物 由於單憑觀察,我們未能了解他們背後發展出這些特質的原因。因此,我們亦需進行資料搜集以 作補充,使仿生過程更加順利。 而是次的資料搜集參考了《螞蟻》一書,並尋找出上述特質的原因:


科學創作 我們利用四種不同的特質,構思出四種不同的機械人,以協助我們日常生活。

學科的內容 與 工程設計過程 的配合 要設計和製作一個能有效幫助殘疾人士行走的工具,需要應用不同學科的知識及技能,不同的學科 可以應用在工程設計的不同階段,不同階段對學科知識及技能的具體要求如下:


在上述三項構思中,我們最終嘗試以樂高模型制作了第一項構思:「六足行走支架」。我們利用了 螞蟻六足行走的特點,構思出支架,並在支架的最低處安裝輪子。安裝後,人們行走時不易失平 衡,同時輪子亦方便他滑動,因此他不用以雙手舉起支架便可行走。

步驟四:使用氣球模仿截肢的殘疾人士 為六足模型的足末端加上Blue tape,模仿螞蟻的黏附足墊

步驟六:進行測試一(風扇測試) 利用風扇和氣泵模仿強風吹襲,比較六足模型和輪椅模型的移動距離 輪椅模型在強風下,移動了5.6 cm 六足模型在強風下,只移動了0.8 cm


步驟七:進行測試二(搖晃測試) 利用人手搖晃A4 紙模仿地面震動,比較六足模型和輪椅模型的平衡能力和穩定性 輪椅模型在地面震動下,整個翻側 六足模型在地面震動下,保持平衡,沒有跌倒

步驟八:進行測試三(斜坡測試) 利用書本製造斜坡,比較六足模型和輪椅模型滑後時的角度和斜率 輪椅模型在17度時就出現滑後情況 六足模型在35度時才出現滑後情況

步驟九:根據結果討論及反思設計上的不足之處,提出解決方案,並修訂及優化製成品 可見,六足模型在平衡能力和穩定性上皆比輪椅模型優勝,可以彌補輪椅模型的不足,加上六足模 型的靈活性,可以拉闊收窄,調高調低,更能走上梯級,令六足模型更加適合應用在殘疾人士身 上。


4.1.6 Nurturing Creativity through Visual Art related Activities 老師:黃素蘭 博士 完成這個課程後,學生需要提交一份學習歷程檔案,當中包括:

1) 展示課堂參與的活動及個人的反思 (見圖1),包括小組的教學演示 (見圖2); 2) 在日常生活中搜集具創意的圖片/示例,並分享當中的創意點子和給個人的創意啟示 (見圖3)

圖1:課堂學習活動及個人反思 (何靜騫)


圖2:綜合視覺藝術活動探究常識科的槓桿原理 (showcase) (何靜騫)

圖3:在4C (Big C, Pro C, mini-c 和little C) 的圖片搜集中, 李嘉琪分享了mini-c 的示例和給她的啟示


4.1.7 Creativity Development through Robotics Teacher: Dr.Cheng Mo Yin Vivian This course aims at developing different creativities of students through robot-related activities. The following four assignments had demonstrated Creativity in Robotic Application, Creativity in Robotic Making, Creativity in Robotic Teaching and Creativity in Robotic Presentation, respectively

Creativity in Robotic Application Yuen Wing Tung: Ng Yan Tung, Chau Wing Leong and I have used a robot arm for the Chinese herb shop.

Xarm’s coding platform is user-friendly. Each ID corresponds to 1 joint, and Xarm will also move when the value is adjusted, which is convenient for coding. In addition to adjusting the value, moving the Xarm directly will also change the corresponding value immediately. So, there are two ways to allow users to create harder, more creative, and abundant movements, that don’t hinder creativity because of a restraint in coding and tools.

Chinese Herb X Arm This robot can pick and place Chinese medicine (herbs) continuously in a clinic and help to reduce or replace the repetitive work of a human. In traditional Chinese medicine stores, they usually rely on manpower to dispense the herbs.It is rather time-consuming and labor intensive. Xarm can imitate human joints to a large extent, and with coding, it can be faster and save time and effort to dispense drugs.


How does it work?

From the above process of Xarm mimicking dispensing herbs, it is easy to show the potential of the robotic arm to replace and reduce human resources. In addition, Xarm has the ability to mimic the joints of the legs and simulate leg movements (such as flexing and lifting). In summary, if Xarm is edited and adjusted, it can be applied to a number of dangerous, repetitive, boring actions, and discovering more actions that humans can do, but will not do, because of danger, repetition, and boredom. This will not hinder creativity.


Creativity in Robotic Making Yeung Man Lok: Kwok Tsz Fung, Liu Yung Chit and I have used Mindstorms and Microbit to make a Spiderbot for watering plants on a farm. We have gone through a long exploration journey – from a first trial with Microbit and then by self-assessment through to improvement using Mindstorms. We found making is a challenging process with a lot of learning and our designs keep changing during our making process. Please read below: Stage 1: First Trial (using Microbit and wooden sticks for watering) and self-evaluationweaknesses)

(see first coding in next page) Stage 2: Second Trial a. to improve Effectiveness (structure) -> use LEGO Mindstorms (to create 8 walking legs using only one motor!) b. to improve Novelty (function) -> use Microbit (to detect temperature and display readings)

(see second coding in next page) Stage 3: Modifications Using a LEGO motor and blocks to modify the water spraying mechanism.

A Watering SpiderBot Finally we used the colour sensor in LEGO Mindstorms EV3 to recognise different colours, and the 5*5 LED array in Microbit to show the temperature and the buzzer module to make sounds. We made a water spider and had different tests and coding through the process.




Creativity in Robotic Teaching

Most primary schools focus on teaching the assembly and operation of Mbot car in lessons or after school courses. Their activities are usually on competing for accuracy or speed. However, Miss Bunny helps children to play with a Mbot car in an alternative and fun way. And, our exercises request students to design their own robot, and stimulate their creativity.


Creativity in Robotic Presentation



4.1.8 Creativity and Human Development Teacher: Dr.Cheng Mo Yin Vivian, Ms.Chan So Mei Sharon, Mr.Chan Kwok Pui Wylie Here are some extracts of individual student essays. They described an imaginative scenario in which one chosen modern and one chosen ancient person met, and then envisioned how new STEM+A ideas emerge through their interactions.

1.When Van Gogh met Dr. Chan Man Ho (modern astrophysicist)…

(by Chan Wing Laam, Kawaguchi Saki, Yu Ka Wai, Wu Shang, Wu Di)

Starry night

He may like to draw a Black Hole…

・ Dr. Chan always uses physics, maths and computers to do some modelling in astrophysics ・ The modelling is to imitate the universe observed by others ・ However, some celestial events which cannot be observed are very abstract. Dr Chan used a digital model (mathematical model) to imitate the universe. He has never tried to do modelling by drawing pictures. ・ Therefore, Dr. Chan wants to introduce some abstract ideas about astrophysics to Van Gogh, such as black holes, magnetic fields, and then invite Van Gogh to draw the perception of a black hole, which is an abstract celestial event

2.When the modern artist Ma King Shun meets the ancient inventor Cai Lun…. (By Wong Sze Wing)

For this meeting, the two persons may wish to make paper in an innovative and artistic way. And Dr. Ma may want to do some experiments on it first. You see, they have such a good dialogue!


3.When Da Vinci met Leoh Ming Pei (modern famous architect)‌ (by Leung Cheuk Long)


4.When modern environmental scientist Dr. Tsang meets the historical artist Magritte (by Tang Cho Yee)

Magritte Museum … In nature, artists and scientists are the experts in two extremely different fields-- the former is art, the latter is science, therefore they had not interfered with each other and had rarely cooperated with each other for a long time. Yet, due to the popularization of arts and science nowadays, the cooperation between artists and scientists has become more and more common, their professions can complement and supplement each other.Under this context, my groupmates and I had proposed a bold imagination that “there is an opportunity for a historical famous artist (Rene Magritte) and a modern scientist (Dr. Tsang Yiu Fai) to meet each other in the present”, investigating what chemical reaction would occur between them in our group work as we have done before. …. Magritte exchanges his professional knowledge and skills with Dr. Tsang 1.1 Visit of Magritte Museum Magritte and Dr. Tsang can go to visit the Magritte Museum in Brussels, Belgium. The Magritte Museum is the largest collection of original artworks by Rene Magritte in the world, displaying more than 200 different kinds of his artworks including sculptures, drawings and paintings; Some of his masterpieces are also displayed there (Magritte Museum, n.d.). Taking Dr. Tsang to the museum, Magritte can serve as a gallery guide to explain to him his artwork content and implications. It lets Dr. Tsang know more about surrealism and Magritte’s artistic style. Dr. Tsang can ask how Magritte generated these artwork ideas, in order to understand the creative methods Magritte has used.



5.When Modern 3D specialist Dr. Chiu meet the historical sculptor Michelangelo‌

(by Ho Po King)

Conflicts about the church decoration design: First, Dr. Chui suggests using 3D printing for sculpture parts as it is time saving and the design is easy to adjust during the process, for example for enlarging and minimising the size. However, Michelangelo insists on traditional hand-made sculpture, he thinks that using 3D printing to make a sculpture is not an art anymore and it is a kind of an insult to the sculptor. Then, Dr. Chui explains the efficiency of 3D printing about the repeated pattern of tiles or decoration that can be helped by 3D printing, and also mentions the fact that nowadays technology is a trend to attract visitors, audiences and children to pay attention to an object. In this case, the technology involved in the church can get children’s attention first in order to introduce the church culture. As a stubborn person, Michelangelo thinks that letting a machine replace a sculptor’s hands violates his principle of doing art and says the artwork should be totally designed by his brain.


Ending: Dr. Chui shows his artwork of the sculpture figure that he has been preparing for a year and explains his viewpoint towards traditional sculpture. In his opinion, 3D-printing definitely cannot replace the traditional sculpture since only the traditional sculpture can show the aesthetic of the artist’s creation. Each rough scratch made by the sculptor and the imperfect symmetry of the traditional statue show the intrinsic aesthetic of the sculpture. Dr. Chui suggest Michelangelo first designs all the sculpture by computer which helps the easy adjustment before the sculpture starts, for the particular unique statues. Besides the sculptures, Michelangelo also agrees to paint the wall of the church and then VR techniques by Dr. Chui will be added to those paintings for audience interaction in order to increase the audience’s interest for cultural education about the church. Changes in Michelangelo: After cooperation with Dr. Chui, Michelangelo’s personality changed from stubborn to being willing to take others’ advice. He has learnt to have more freedom in arts development and innovative creation with technology, in 21st century Hong Kong. His artistic style has also changed from high personal style to more open-minded with some advanced technology included like 3D printings and VR. Changes in Dr. Chui: After meeting Michelangelo, there are no huge changes of Dr. Chui by looking at his personality, social environment and knowledge. Dr. Chui’s personality is still humble and open-minded. His social environment is still an open and inclusive society, as well as a high technology environment. However, he has learnt some traditional sculpture knowledge after cooperating with Michelangelo.

Acknowledgement Thanks to Miss Sharon Chan who designed this activity. Also, thanks to Mr. Ma King Shun, Dr.Tsang Yiu Fai, Dr. Chan Man Ho and Dr. Chui Hin Leung for joining the interviews of the students.


4.2. Student Activities Reports

4.2.1 Dream School 4.2.2 STEAM workshop 4.2.3 Science Museum and STEM 4.2.4 Cultural museum and STEM 4.2.5 Robocon 4.2.6 Microbit design competition 4.2.7 STEM in SEN schools


4.2.1 Dream School Learning Development Grant (LDG) 2017/18

Project leader Mr. Yau Ka Po Name of Project The Dream School Project- Innovative School Design Competition Project Supervisor Dr. Leung Chi Hin Basic Information About the Competition and Training Date: May 6 2018 (Sun), May 13 2018 (Sun) Time: 09:45-17:15 Venue: Conference Centre (Day 1,2), D1-LP-01 (Day 2 Presentation) Participants: About 100 students and teachers from 10 secondary schools and EdUHK Activity content: a) Competition of concept promotion b) Training workshop and guest sharing c) Group discussion and presentation d) Pitching session

Guest Talks:

Mr. Francis Ngai

Ms.Bibiann Wong

Mr.Kacey Wong

STEM workshops: Architectural Design

Preparation

Pitching

Presentation


4.2.2 STEAM workshop 學生活動-STEAM 工作坊-香港教育大學2017-18 計劃領導人 計劃名稱 計劃監測人

郭弦羲 香港教育大學STEAM 工作坊 鄭慕賢博士, 科學及環境學系

工作坊環節: 日期: 2018年1月至2月 地點: 香港教育大學E座 以及D3-G/F-05 參加者: 100 人 (每個工作坊環節大約30個學生,2小時;總共3個工作坊) 活動內容: 1.教授STEAM基本概念於本校學生 2.體驗3個科學創意活動-包括3D繪畫、使用LittleBits以及創作環保發明

〈一〉從無到有-3D繪圖

本節課邀請了一位富產品設計經驗的導師,他熟悉不同的3D繪圖軟件,學生能在課堂上學會3D 繪圖的基本概念及操作繪圖軟件——Tinkercad。 3D繪圖的難處並不在於軟件,而是我們的慣性思維。以前我們學繪圖的時候,一個正方形就畫 四條線,但在軟件上呈現的立方體,卻有六面。我們需要習慣在腦海中以六個構面來想像。所 以導師要求同學們細心觀察身邊的事物,並用紙筆繪畫下來,最後便在Tinkercad上學習繪圖。

〈二〉電子積木的奇想-littleBits應用

LittleBits是一套以樂高(LEGO)為概念的模 組化電路板小玩具,只要將幾塊分別具備不 同屬性顏色分類,像是開關、燈與電源等的 部件透過其邊緣的磁鐵組合在一起,不出幾 秒即可輕鬆完成一個電路!導師先讓同學自 行摸索不同部件的功能與特點,再請同學分 組設計一個日常生活中能使用的「小工具」 ,下圖是同學們的製作成果。


跑步發電機

自轉車

〈三〉反璞歸真-環保吸塵器 <-吸塵機的大小並無固定,同學可剪去容 器的上半部分,令機身更短。

大部分同學使用硬卡紙製作扇葉,亦有同學 把鋁罐剪開,使用鋁片製作。 ->

最後一節,導師帶領同學以膠樽或鋁罐製 作吸塵器,當中扇葉是需要同學自製的。 同學需要先把容器割開,在底部放置馬達 及扇葉,並固定電線及電池盒。連接容器 的上部分與底部,樽口就是吸入口,便大 功告成!同學大都敢於挑戰,使用不同的 原料與方法去完成這個作品。 一次失敗只是代表一個新挑戰,讓我們有 動力去改善,去做得更好,在跌跌撞撞之 中,共同找到STEAM作品的意義與價值。 詳情請看: https://www.eduhk.hk/creativity/view.php?secid=52702&u=u

向前移動三輪車


4.2.3 Science Museum and STEM STEAM教育推廣導師計劃 :社區服務- 科學館STEAM教學 (小學教學社區服務) 活動領導人:陳浩進 活動地點:本地小學 及香港科學館 活動目的: 給予教大同學機會,讓同學嘗試在科學館進行教學,訓練小學生科學創意。 活動流程:

活動 STEAM教學

服務簡介

地點 教大 (兩場)

向教大同學(導師)介紹: -活動內容 -活動注意事項 -創意STEAM教學法 安排同學小組討論: -運用科學館展品原理,設計東西解決日常生活難題

小學STEAM教學

各服務小學

向學生介紹: -活動內容 -活動注意事項 -創意STEAM方法 學生小組討論: -運用創意STEAM方法,設計東西解決日常生活難題 -匯報成果


科學館實地教學

科學館

學生參觀科學館: -了解不同展品的科學原理 導師指導: -同學完成工作紙

工作紙例子:


4.2.4 Cultural museum and STEM 歷史博物館及STEAM 「AR博物館之STEAM創作活動」 負責學生:蔡思慧、邱曉萱 參與學校: 寶安商會王少清中學及滙基書院 擴增實境(AR-Augmented Reality)是一種結合虛 擬和真實世界的技術,它能為我們提供現實世界 中無法直接呈現的訊息。是次活動讓學生運用AR 技術呈現出他們所創作的發明品,從中發揮出他 們無窮的創意。 本活動希望學生透過參觀歷史博物館及三棟屋博 物館,了解歷史文化背景,以「探索古時」、「 思考現今」到「想像未來」的形式來發揮同學想 像和創意。活動包括1次參觀、3次工作坊及1次分 享會,學生先到博物館參觀,再用SCAMPER創意 策略構思未來發明的意念,使用Tinkercad製作虛 擬立體模型,最後以Ravvar擴增實境(AR)技術 來展示發明。

1.到校工作坊(一): 讓學生了解活動詳情,並學會運用 SCAMPER策略進行創作。 2.博物館參觀: 參觀博物館以了解歷史文化,選擇參賽 展品,初步用腦圖展示多個構思,用 SCAMPER作聯想。 3.到校工作坊(二): 從多個構思中選定參賽設計,培養學生 「從闊至窄」的創作模式。優化發明的意 念和設計,繪畫初稿。使用Tinkercad把 設計製成虛擬立體模型。

滙基書院 潘頌怡、陳穎、胡翠瀅、黃錫賢及張嘉俊同學

4.到校工作坊(三): 完成虛擬立體模型後,讓學生學習運用 Ravvar製作擴增實境AR。 5. 比賽及分享會: 提供一個分享和交流的平台給學生發揮。


滙基書院:潘頌怡、陳穎、胡翠瀅、黃錫賢及張嘉俊同學的展示


4.2.5 Robocon

蒙古白鹿化身機械人參加大專機械人大賽

負責學生:陳孟琪,馮建諾,陳孟琪等 我們一班主修科學、數學、電腦、常識或視 藝教育以「魯師」為團隊名稱,打正旗號以 老師的角色第一次參予由香港科學園主辦的全 港大專生機械人大賽(RoboCon 2019)。今年 大會的主題是「飛奔大漠中」,我們嘗試將蒙 古歷史和文化元素注入機械人的設計,把兩 隻 (一隻半自動和一隻四腳全自動) 的比賽機 械人分別打造成最具蒙古特色的代表 —強悍 的藏狼和溫馴的白鹿,將科學、科技、工程和 數學(STEM) 與人文和藝術融合,為大眾帶來 更廣闊視角、更豐的靈感和更多的可能性。 我們用市面機械人DIY套件的物料和工具去 製作和改良兩隻比賽機械人,一來是因為在 設計上比較容易掌握和適合初階使用者,二 教大『魯師』隊跟兩隻比賽機械人『蒼狼』和 來是我們想藉此機會示範用簡單的材料和結 『白鹿』合照 構都可把機械人製造出來,嘗試使機械人製 作的門檻降低,希望有更多人可分享到設計 和製作的樂趣。此外,我們也設計了相關的 教案,利用機械人提升教學質素和效果。 在課堂上學的東西很小有機會在現實生活中用到,比 如,物理中的運動學和機械原理可以在計算機械人運 行的力量和速度。或者,物理中的電力學可以計算機 械人中的電子元件所需的能量和電壓等等。 這個機械人融合了課堂上學到的科學和數學知識,也 用上了工程學的知識來設計我們的機械人。我們的機 械人不單單是單純的STEM活動,因為我們也增添了 藝術元素,為我們的機械人增加了一點人文的趣味和 把我們的機械人變得更有生氣也更貼近我們學校的 特色-人文關懷與人培訓。更不能不提我們的機械人 的教學元素。 教案例子:用藏狼(MR1)示範速率的計算或用白鹿(MR2)示範四腳動物行走方式和了解其肢體結


美化機械人組由三位修讀視覺藝術教育的應屆畢業生 組成。在有限的時間裡不斷去解難,由起初構思與 蒙古有關的傳說角色「蒼狼白鹿」,到物料試驗,最 後利用最輕盈及低成本的紙材和環保物料去為機械人 裝飾。在製作期間,要留意有哪些機械組件部分和關 節需要活動,就要避免裝飾物阻礙到機械的運作。 同時,因技術困難,負責機械人的成員不斷作出 修改,我們也因應其設計而不斷作出改動,正正 考驗我們的變通能力。MR1是一頭狼,帶有衝 勁 ; 而 MR2外 觀 設 計 選 取 以 小 鹿 造 型 , 是 呼 應 着 機械零件的運作。另外我們也做了一隻鹿媽媽, 象徵教大孕育小鹿,牠身上有許多圓形的圖騰, 是一個新穎的QRCode設計,用手機掃描後可看 到兩個機械人的教學設計,中、小學皆可參考。

設計意念簡報: 「魯師」希望將機械人設計普及化和注入文化藝術元素,亦提供教案例子建議讓 機械人優化教與學的。

圖片來自網上


4.2.6 Micro:bit Design Competition Micro:bit發明設計大賽 香港教育大學科學及環境學系與創意學會在六月份舉行了一場別開生面的發明比賽「綠創 micro:bit設計賽」,吸引超過20間小學,共200多名小學生參賽。這是一個開放的、少限制的、 即興的、多元化的發明活動,給予學生想像未來發展的無限可能性,少有地為學生們提供發揮多 元創意的機會。

參賽學生製作的micro:bit發明作品及相應的未來故事背景 是次的比賽主要分為兩個部分。第一部分,參賽學生要按指定題目自由聯想,產生大量無分對 錯的意念並從而構思出不同的設計方案,接着選取其中一個作改良和詳細設計,利用micro:bit (註)和相關的電子零件即場創作發明。比賽的第二部分是設計和製作A4紙箱模型,將設計意念 和相關的未來情境展現出來,向大家敍述一個未來故事。活動的著眼點並非只在於作品的功能 和技術上,而是在於它的應用、它和人的關係、以及它與未來情境的融合。為了鼓勵學生的多 元創意,比賽的得獎項目除了有傳統的科技和發明獎外,也包括環保、意念、美術、故事和未 來發展獎等,讓同學各種的才能都有發揮的空間。 註:micro:bit由英國BBC公司設計,是一部手提可編程的微型電腦,可用於機械人甚至樂器的創作。 (source: https://microbit.org/)

比賽既限時又需發揮創意,也沒有難倒這班 團結的參賽者

每組學生都想出很多新奇有趣的意念,大家 都很享受這個思考遊戲


在這次著重自由聯想的即興設計活動中,學生的創意大爆發,創作出既新穎又有趣的發明。 例如,在小學生的眼中,未來商店是高度自動化和重視持續發展的,所以他們設計的未來商店 不需要店員,同時亦注重環保。例如理髮店可自助洗髮,而污水經處理後可灌溉植物;糖果店 可讓客人帶舊糖果來,熔掉後重新製作成新糖果;而遊樂場就有四處行走的清潔機械人,負 責收拾和回收地上廢物。在很多很多年後的端午節,人們仍然喜愛吃糉,不過就不用自己開糉 了,有機器自動打開糉葉,把糉葉循環再用,還可把糉子送入我們的口裏呢!而未來的龍舟都 安裝了避障感應器,減低比賽時意外的發生。在未來的家居,任何地方都可安裝各式各樣的感 應器,不但小朋友的錢箱可以裝防盗感應器,擺放壽司的碟子也可以裝溫度感應器呢。

參賽學生的各種不同潛力在比賽中被發掘,人人都可享受發明的樂趣 學生在賽後接受訪問時,都對自己可以在約兩小時的時間內完成一項發明設計感到難以置信, 他們都認為團隊的合作和大量意念的引發,是今次成功的主要因素。完成比賽後,他們普遍對 發明產生了很大的信心和興趣。在傳統講求技術的發明比賽的框架之外,這個發明活動提出了 創新的模式及理念供大家參考與選擇。 這次發明比賽的模式亦可融入現時的學校課程中,成為一個創新、有趣及充滿學習空間的教學 活動。同時,更可成為一項有意義和充滿歡樂的親子活動!


4.2.7 STEM in SEN schools



4.3 Other Teaching and Learning Supporting Resources

4.3.1 YouTube videos or STEM+A making with classification of topics 4.3.2 STEM+A book and web referneces 4.3.3 Supporting local institutions


4.3.1 YouTube videos for STEM+A making with classification of topics Primary level Art To Remember (2016),Art Lesson: STEAM Pendulum Painting, Retrieve from: https://www.youtube.com/watch?v=2t20vL9HUh4

Art To Remember (2016), Art Lesson: STEAM Drawing Robots, Retrieve from: https://www.youtube.com/watch?v=y6R4irXX9tE

Awesome iDeas(2018), 5 Amazing DIY Toys Boat. Retrieve from: https://www.youtube.com/watch?v=amaZRdCC5xQ

Babble Dabble Do(2016), STEAM Project Idea: Bleeding Blossoms. Retrieve from: https://www.youtube.com/watch?v=HL4ykRtwneU

Collins Key (2017), Learn How To Make The Best DIY Liquid Food. Retrieve from: https://www.youtube.com/watch?v=pQceOv2e4TY

Doers’ club (2018), Balloon powered car. Retrieve from: https://www.youtube.com/watch?v=KMUncKor7FY


DavidLeeEdTech(2016),STEM Education Week with Design Thinking. Retrieve from: https://www.youtube.com/watch?v=YB_QhFFPpLs (01:19)

Modern Teaching Aids (2012), LEGO Education STEM. Retrieve from: https://www.youtube.com/watch?v=y7C0eDtDcvE (00:20)

TOPick video(2016):《生果變鋼琴? 藝術融入STEM教育》。撰 自:https://www.youtube.com/watch?v=60oodsV-yjY (00:34)

Middle level Best Of Orlando(2014), Frozen Activities for Ice Powers Just Like Elsa the Snow Queen. Retrieve from: https://www.youtube.com/watch?v=zVAL5I-WtAQ

Blackfish(2016),How to Make Walking Robot. Retrieve from: https://www.youtube.com/watch?v=Z7N0xCDVzIA


Brusspup(2017), 9 Amazing Magnet Gadgets!. Retrieve from: https://www.youtube.com/watch?v=XvkEExdl-w4

Creative Skillz(2017), How to make STIRLING Engine | Amazing Science Project | Homemade | DIY. Retrieve from: https://www.youtube.com/watch?v=8d53jgDf3Kg

DD ElectroTech (2017), How to Make a Flying Airplane using Plastic Bottle and Cardboard. Retrieve from: https://www.youtube.com/watch?v=u0PKS0nr63k

DIY(2017), How To Make Water Filter At Home Easy Way DIY. Retrieve from: https://www.youtube.com/watch?v=IGo_SnoQ2ks

Educ8s.tv (2018), Best DIY Robot kit for beginners - Micro:Bit . Retrieve from:https://www.youtube.com/watch?v=5bBTvs9sjAo

Joshua Zonker(2016), DIY Cheap and easy-ish Soda Can Stirling engine. Retrieve from: https://www.youtube.com/watch?v=_c7BGP94eHI


Making (2017), The easiest walking robot to make DIY. Retrieve from: https://www.youtube.com/watch?v=8a0A9wQJ3Nw

High level

DrScrew(2016),How to Make an Air Pump. Retrieve from:https://www.youtube.com/watch?v=7sLr2SY7CfQ (10:22)

Mini Gear pro(2017), How to Make Steam Power Generator cool science project with easy way. Retrieve from: https://www.youtube.com/watch?v=X_59FZYv9qY

Inna creation(2008),Make a toy water well from a milk carton Retrieve from: https://increations.blogspot.com/2008/03/water-well. html

What Do We Do All Day?(2016),Gravity Game for STEM learning .Retrieve from:https://www.youtube.com/watch?v=Pn4fG-Z3doQ


Windell Oskay(2007), Bristlebot: A tiny directional vibrobot, Retrieve from: http://www.evilmadscientist.com/2007/bristlebot-atiny-directional-vibrobot/

SemiHigh Production(2017),Homemade kids car toys – Recycled. Retrieve from: https://www.youtube.com/watch?v=w0cjLk41Qqs

Supergokue1(2018), Homemade 5 gallon bucket race style fishing boat. Retrieve from: https://www.youtube.com/watch?v=ndmJD9IBh4I

Yuri Ostr(2017), 4 Amazing ideas for Fun or Simple Ways to Make a Boats. Retrieve from: https://www.youtube.com/watch?v=qncATegYpeM


4.3.2 List of Educational Resources (1) Reference books

科林.史都華(2019):《STEM大冒險: 原子與物質的超好玩科 學實驗》。台北:五南圖書出版股份有限公司 。

馬宋芝(2008):《100個10元科學大實驗!(試閱)》,撰自: https://www.hkreadingcity.net/resource/5af55ece2e958831073c9869

黃珮欣(2016):《 魚菜共生 : STEM教學的應用與實踐》。 新人才文化。


黃金耀博士(2019):《STEM學習大策略-啟發孩子的科創思維》。 皇冠出版社(香港)有限公司。

科技領域教學研究中心許庭嘉教授團隊(2019):《輕課程 飛行 機器人專題導向學習 整合STEAM與運算思維》。台灣:台科大圖 書股份有限公司。

劉子健(2017):《科學小博士 - 生活篇》。明窗出版社。


劉子健(2017):《科學小博士-創意篇》。明窗出版社。

劉子健(2018):《科學小博士-智趣篇》。明窗出版社。

莉莎.伯克(2018):《兒童必讀的STEAM百科[新雅‧知識館]》。 香港北角:新雅文化事業有限公司。


莉茲.李.海涅克(2018):《STEAM科學好好玩 - 史萊姆、襪 子離心機、野餐墊相對論……》。台灣:小麥田。

李揚津, 陳文豪, 陳偉康, 霍年亨, 郭炳偉, 李凱雯等編(2017): 《 STEM教學:從理論到實踐活動》,香港教育大學。

臺南市政府教育局和親子天下整合傳播中心團隊(2018):《20個 STEAM新視野》, 台北市:親子天下。

鄭慧溶(2019):《漫畫STEAM科學史(1) - 石器時代到古希 臘,奠定科學基礎知識(二版)(中小學生必讀科普讀物.新課綱 最佳延伸閱讀教材)》(鄭家瑾譯)。新北市:小樹。


Chang,Chi(2014):《在未知中找尋樂趣:STEAM教學實踐在 中學科學及數學課堂上的實行》(上)。 Chang,Chi(2014):《在未知中找尋樂趣:STEAM教學實踐在 中學科學及數學課堂上的實行》(下)。

王麗君(2019):《用Scratch玩micro:bit體驗STEAM創意程式設 計》(電子書)。

簡佑宏、 朱柏穎和 簡爾君(2017):《STEAM取向之Maker教 學》。中等教育 ; 68卷2期 (2017 / 06 / 01) , P12 - 28。

盧秀琴、洪榮昭和陳芬芳(2019):《設計STEAM課程的協同教 學-以「感控式綠建築」為例》,教育學報 ; 47卷1期 (2019 / 06 / 01) , P113 – 133。

陳家騏和古建國(2017):《STEM教學應用於高中探究與實 作課程之行動研究-以摩擦力為例》。物理教育學刊 ; 18卷2期 (2017 / 12 / 01) , P17 – 38。

許兆芳(2018):《STEAM大挑戰——32個趣味任務,開發孩子 的設計思考力+問題解決力》。台北市:商周出版有限公司。

張琦(譯)(2018):《在未知中找尋樂趣:STEAM教學實踐在中學科學 及數學課堂上的實行》(上),教育研究月刊,285期。


張琦(譯)(2018):《在未知中找尋樂趣:STEAM教學實踐在中學 科學及數學課堂上的實行》(下),教育研究月刊,286期。

(2) Useful web resources Coding Microbit(n.d.), Code. Retrieve from: https://microbit.org Tinkercad (2019), 3D design. Retrieve from: https://www.tinkercad.com/ Scratch(n.d.), Create stories, games, and animations. Retrieve from: https://scratch.mit.edu/

Education BENEVO科技應用 (2017):《四種實境 - VR , AR , SR , MR》, 撰自: https://benevo.pixnet.net/blog/post/63012046-%E5%9B%9B%E7%A8%AE%E5%AF%A6%E5%A2%83--vr%E3%80%81ar%E3%80%81sr%E3%80%81mr HKT education(2019):《STEM+教學方案 虛擬實境 (VR)》, 撰自:https://www.hkteducation.com/chi/stem/vr.php STEAM works(2019) Education. Retrieve from: https://www.facebook.com/ST3AMWORKS/?ref=br_rs Stem works(2019), A resource for teachers, mentors, parents, STEM professionals, volunteers, and everyone. Retrieve from: http://stem-works.com/


(3) Supporting local organizations 教育局STEM教育網頁 http://stem.edb.hkedcity.net 香港科技大學 STEM@HKUST http://stem.ust.hk/zh 其他教育團體: 香港新一代文化協會 http://www.newgen.org.hk/ 香港文教協會 http://www.hkcea.org.hk 香港STEM培育協會 http://www.stemnurture.org 培正專業書院 http://www.pca.edu.hk/stem 藝術與科技教育中心 - STEM教育中心 https://www.atec.edu.hk/stemcentre/ OC STEM Lab 創意工作室 https://www.olympiancity.com.hk/tc/OCStemLab STEM work http://www.stemwork.com.hk/ STEM Academy http://www.stem.org.hk VTC STEM 教育中心 http://stem.vtc.edu.hk


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.