Download Binomial Theorem - Mathematics Allen Kota Study Material for JEE Mains & Advanced Exam PDF

Page 1

JEE-Mathematics

Page No: 1

BINOMIAL THEOREM 1.

BINOMIAL EXPRESSION : Any algebraic expression which contains two dissimilar terms is called binomial expression. For example : x – y, xy +

2.

1 1 1 ,  1,  3 etc. x z (x  y )1 / 3

BINOMIAL THEOREM : The formula by which any positive integral power of a binomial expression can be expanded in the form of a series is known as BINOMIAL THEOREM. n

If x, y  R and n  N, then : ( x + y)n = nC0xn + nC1xn-1 y + nC2xn-2 y2 + ..... + nCrxn-r yr + ..... + nCnyn =  n C r x n  r y r r 0

This theorem can be proved by induction. Observations : (a) The number of terms in the expansion is ( n+1) i.e. one more than the index. (b) The sum of the indices of x & y in each term is n. (c) The binomial coefficients of the terms (nC0, nC1.....) equidistant from the beginning and the end are equal. i.e. n C r = n C r –1 (d)

n  Symbol nCr can also be denoted by   , C(n, r) or A nr . r 

Some important expansions : (i)

(1 + x) n = n C 0 + n C 1 x + n C 2 x 2 + ........ + nC nx n .

(ii)

(1 – x) n = n C 0 – nC 1x + n C 2 x 2 + ........ + (–1) n . n C n x n .

Note :

The coefficient of x r in (1+x) n = nC r & that in (1–x) n = (–1) r . nC r

Illustration 1 :

Expand : (y + 2)6.

Solution :

6C y6 + 6C y5.2 + 6C y4.22 + 6C y3.23 + 6C y2. 24 + 6C y1 . 25 + 0 1 2 3 4 5

6C

6 6 . 2 .

= y6 + 12y5 + 60y4 + 160y3 + 240y2 + 192y + 64.

NODE6\E\Data\2014\Kota\JEE-Advanced\SMP\Maths\Unit#11\Eng\01.BINOMIAL.p65

7

E

Illustration 2 :

 2y 2   Write first 4 terms of  1  5  

Solution :

 2y 2  7  2y 2  7  2y 2  7C , 7C   C     , C 3    , 2  0 1  5   5   5 

Illustration 3 :

The value of

2

18  7  3.18.7.25  3

3

is -

3 6  6.243.2  15.81.4  20.27.8  15.9.16  6.3.32  64

(A) 1

Solution :

3

(B) 2

(C) 3

The numerator is of the form a 3  b 3  3ab  a  b    a  b  Where, a = 18 and b = 7 Denominator can be written as



(D) 4 3

Nr = (18 + 7)3 = (25)3 6

3 6  6 C 1 .3 5 .21  6 C 2 .3 4 .2 2  6 C 3 .3 3 .2 3  6 C 4 3 2 .2 4  6 C 5 3 .2 5  6 C 6 2 6   3  2   5 6  25 

Nr (25) 3  1 Dr (25) 3

3

Ans.

1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download Binomial Theorem - Mathematics Allen Kota Study Material for JEE Mains & Advanced Exam PDF by Concepts Made Easy (By Er. Ajay Kumar) - Issuu