C3: Collaborating to Conquer Cancer Spring 2018 Edition

Page 5

Terry Fry spent the 2016 winter holiday in the hospital – not as a patient but as a doctor. That winter, he was trying something that had never been done before, using a new drug built from his patient’s own immune cells to treat a boy whose acute lymphoblastic leukemia (ALL) had shrugged off chemotherapy, radiation, bone marrow transplant and even a targeted treatment that was a cousin of Fry’s new drug. Fry, now a recent arrival to University of Colorado Cancer Center, had overseen much of the basic science behind the new drug while leading the Hematologic Malignancies Section in the Pediatric Oncology Branch of the National Cancer Institute, but that winter, he took a break from the lab. “I intentionally put myself in the clinical service because I wasn’t exactly sure what was going to happen. I wanted to be there in person for my patient,” he says. The boy was beyond the reach of traditional treatments. This new drug was his last real hope. In the next few pages, we’ll try to understand this new drug that Terry Fry hoped would save his young patient’s life. But to do that, we need to go back a little further than the winter of 2016. Actually, we need to go back much further.

Curing Cancer Starts with HIV Research Two billion years ago (give or take a few years), viruses learned something that would take schoolyard bullies another 1.999998 billion years to discover: It’s much easier to force someone else to do your homework than it is to do it yourself. Viruses force cells to do their homework. But instead of threatening cells with their viral little fists, viruses are much more devious – they insert their “work” alongside a cell’s own assignments so that when the cell goes through its pile of homework, it accidentally does the virus’s work, too.

5 C3: SPRING 2018


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.