Collins Cambridge IGCSE Additional Mathematics sample

Page 8

2.2 Chapter review π π ) = 1  for  0 ⩽ x ⩽ 3 4

1

Solve 2cos2 (3x −

2

Show that (sec2 θ −1) + (cosec2 θ −1) = sec θ ⋅ cossec θ

3

y

(4 marks) (5 marks)

5 4 3 2 1 0

0

p 2

p

3p 2

2p

x

The graph shows the graph of y = a + bsincx Find the value of a, b and c 4

Solve the following equations (i) 4sin2x + 5cos2x = 0

5

(3 marks)

0° ⩽ x ⩽ 180°

0° ⩽ x ⩽ 360° (ii) cot2y + 3cosec y = 3 π 1 (iii) cos(z + ) = − 0 ⩽ z ⩽ 2p 4 2 (i) Prove that sec2 x + cosec2 x = sec2 x · cosec2 x

(3 marks) (3 marks) (4 marks) (4 marks)

(ii) Hence or otherwise solve sec2 x + cosec2 x = 4tan2 x 90° ⩽ x ⩽ 270° 6

(4 marks)

(i) State the period of sin2x

(1 mark)

(ii) State the amplitude of 1 + 2cos3x

(1 mark)

(iii) Sketch the graph of a y = sin2x 0° ⩽ x ⩽ 180° b y = 1 + cos3x

0° ⩽ x ⩽ 180°

(4 marks)

(iv) State the number of solutions of sin2x − 2cos3x = 1

0° ⩽ x ⩽ 180°

(1 mark)

Chapter 2: Quadratic Functions

9


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.