Matematica 1400 questoes resolvidas e gabaritadas

Page 55

WWW.EXERCITANDO.COM.BR

55

http://www.exercitando.com.br Notícias e Conteúdos para Concursos Públicos – Material de Estudo

RAZÃO E PROPORÇÃO 1. RAZÃO Razão entre dois números (sendo o 2º diferente de zero) é a divisão do primeiro pelo segundo. ou a:b (para todo b≠0). a_ b Ex: A razão entre 3 e 2 ⇒ 3 / 2 (três para dois) A razão entre 0,25 e 2 ⇒ 0,25 = 1/4 = 1/4 × 1/2 = 1/8 2 2 (um para oito) 2. PROPORÇÃO (P) É toda igualdade entre duas ou mais razões. A proporção a_ = c_ pode ser lida como: b d (leitura: a está para b assim como c está para d). Termos da proporção a → 1º termo ou antecedente da 1ª razão. b → 2º termo ou conseqüente da 1ª razão. c → 3º termo ou antecedente da 2ª razão. d → 4º termo ou conseqüente da 2ª razão. a e d são os extremos da proporção. b e c são os meios da proporção.

2.1. PROPRIEDADES a = b

c_ d

1ª Propriedade: Em toda proporção, o produto dos meios é igual ao produto dos extremos. a.d=b.c Ex: 2 = 4 ⇒ 2 . 6 = 3 . 4 ⇒ 12 = 12 3 6 2ª Propriedade: Em toda proporção, a soma (ou diferença) dos antecedentes está para a soma (ou diferença) dos conseqüentes, assim como qualquer antecedente está para o seu conseqüente. a ± c = a ou a ± c = c_ b±d b b±d d Ex: 2 = 4 ⇒ 2 + 4 = 2 = 4 ⇒ 6 = 2 = 4_ 3 6 3+6 3 6 9 3 6 3ª Propriedade: Em toda proporção, a soma (ou diferença) dos dois primeiros termos está para o primeiro (ou para o segundo), assim como a soma (ou diferença) dos dois últimos está para o terceiro (ou para o quarto) termo. a ± b = c ± d ou a ± b = c ± d a c b d Ex: 2 = 4 ⇒ 2 + 3 = 4 + 6 ⇒ 5 = 10_ 3 6 2 4 2 4 3. DIVISÃO PROPORCIONAL – Existem 4 tipos: 3.1. DIRETAMENTE PROPORCIONAL Ex: Dividir o número 72 em três partes diretamente proporcionais a 3, 4 e 5. Indicando por A, B, e C as partes procuradas, temos que: A tem 3 partes, B tem 4 partes e C tem 5 partes na divisão, A = 3p, B = 4p, C = 5p e A + B + C = 72 A = 3p ⇒ 3 . 6 = 18

B = 4p ⇒ 4 . 6 = 24 partes procuradas: 18, 24 e 30 C = 5p ⇒ 5 . 6 = 30 72 = 12p ⇒ p = 72/12 ⇒ p = 6 3.2. INVERSAMENTE PROPORCIONAL Dividir um número em partes inversamente proporcionais a n grandezas dadas, é a mesma coisa que dividir esse número em partes diretamente proporcionais aos inversos dessas grandezas. Ex: Dividir o número 72 em três partes inversamente proporcionais a 3, 4 e 12. Invertendo os números 3, 4 e 12, teremos 1/3, 1/4 e 1/12, reduzindo as frações ao mesmo denominador temos 4/12, 3/12 e 1/12, desprezar os denominadores não irá alterar os resultados e simplificará os cálculos. Os inversos dos números então, serão 4, 3 e 1. Indicando por A, B, e C as partes procuradas, temos que: A tem 4 partes, B tem 3 partes e C tem 1 parte na divisão, A = 4p, B = 3p, C = 1p e A + B + C = 72 A ⇒ 4p = 4 . 9 = 36 B ⇒ 3p = 3 . 9 = 27 partes procuradas: 36, 27 e 9 C ⇒ 1p = 1 . 9 = 9 72 = 8p ⇒ P = 72/8 ⇒ p = 9

3.3. DIVISÃO COMPOSTA DIRETA Chamamos divisão composta direta à divisão de um número em partes diretamente proporcionais a duas ou mais sucessões de números dados. Ex: Dividir o número 270 em três partes diretamente proporcionais a 2, 3 e 5 e também a 4 , 3 e 2. Indicando por A, B, e C as partes procuradas, temos que: A será proporcional a 2 e 4 ⇒ 2 . 4 = 8 B será proporcional a 3 e 3 ⇒ 3 . 3 = 9 C será proporcional a 5 e 2 ⇒ 5 . 2 = 10 A tem 8 partes, B tem 9 partes e C tem 10 partes na divisão, A = 8p, B = 9p, C = 10p e A + B + C = 270 A ⇒ 8p = 8 . 10 = 80 B ⇒ 9p = 9 . 10 = 90 partes procuradas: 80, 90 e 100 C ⇒10p = 10. 10 = 100 270 = 27p ⇒ p = 270/27 ⇒ p = 10 3.4. DIVISÃO COMPOSTA MISTA Chamamos divisão composta mista à divisão de um número em partes que devem ser diretamente proporcionais aos valores de uma sucessão dada e inversamente proporcionais aos valores de outra sucessão dada. Ex: Dividir o número 690 em três partes que devem ser dir. proporcionais a 1, 2 e 3 e inv. proporcional a 2 , 3 e 4. Invertendo os números 2, 3 e 4 teremos 1/2 , 1/3 e 1/4 Indicando por A, B, e C as partes procuradas, temos que: A será proporcional a 1 e 1/2 ⇒ 1 . 1/2 = 1/2 B será proporcional a 2 e 1/3 ⇒ 2 . 1/3 = 2/3 C será proporcional a 3 e 1/4 ⇒ 3 . 1/4 = 3/4 Reduzindo as frações ao mesmo denominador temos 6/12, 8/12 e 9/12, desprezar os denominadores não irá alterar os resultados e simplificará os cálculos. Os inversos dos números então, serão 6, 8 e 9. A tem 6 partes, B tem 8 partes e C tem 9 partes na divisão, A = 6p, B = 8p, C = 9p e A + B + C = 690, A ⇒ 6p = 6 . 30 = 180 partes procuradas: B ⇒ 8p = 8 . 30 = 240 C ⇒ 9p = 9 . 30 = 270 180, 240 e 270 690 = 23p ⇒ p = 690/23 ⇒ p = 30 TESTES – RAZÃO E PROPORÇÃO 01. Dividindo-se o número 1.200 em partes diretamente proporcionais a 26, 34 e 40, obteremos A, B e C, tal que: a) O valor de B é 312. b) O valor de A é o maior dos três.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.