ch13

Page 93

Sonntag, Borgnakke and van Wylen

13.101 For the previous problem, find the specific heat transfer using Kay’s rule and the generalized charts. To do the EOS we need the gas constant, so from Eq.12.5 we get Mmix = ∑ yi Mi = 0.6 × 28.054 + 0.4 × 26.068 = 27.26 Rmix = 8.3145/27.26 = 0.305 kJ/kg K y M 0.6 × 28.054 cC2H4 = = = 0.6175, Mmix 27.26

cC2H4 = 1 - cC2H4 = 0.3825

CP mix = ∑ ci CP i = 0.6175 × 1.548 + 0.3825 × 1.699 = 1.606 kJ/kg K Kay’s rule Eq.13.86 Pc mix = 0.6 × 5.04 + 0.4 × 6.14 = 5.48 MPa Tc mix = 0.6 × 282.4 + 0.4 × 308.3 = 292.8 K 6 300 = 1.095, Tr1 = = 1.025 Reduced properties 1: Pr1 = 5.48 292.8 Fig. D.1:

(h*1 − h1) = 2.1 × RTc = 2.1 × 0.305 × 292.8 = 187.5 kJ/kg

Reduced properties 2: Fig. D.1:

Pr2 =

6 = 1.095, 5.48

Tr2 =

400 = 1.366 292.8

(h*2 − h2) = 0.7 × RTc = 0.7 × 0.305 × 292.8 = 62.5 kJ/kg

The energy equation gives * 1q2 = (h2 - h1) = (h2 − h2)

+ (h*2 − h*1) + (h*1 − h1)

= -62.5 + 1.606 (400 – 300) + 187.5 = 285.6 kJ/kg mix


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.