Fundamentos de Física. Volumen 1. 9a. Ed. Impreso. Raymond A. Serway & Chris Vuille

Page 15

4.3 | Segunda ley de Newton

distancia entre ellas. Si las partículas tienen masas m1 y m2 y están separadas mediante una distancia r, como en la figura 4.8, la magnitud de la fuerza gravitacional, Fg, es m 1m 2

Fg 5 G

r

2

93

S

Fg S

m2

Fg

[4.5]

r

donde G 5 6.67 3 10211 N ? m2/kg2 es la constante de gravitación universal. La fuerza de gravitación la estudiaremos en más detalle en el capítulo 7.

m1

Figura 4.8 La fuerza gravitacional entre dos partículas es de atracción.

Peso La magnitud de la fuerza gravitacional que actúa en un objeto de masa m cerca de la superficie de la Tierra se le conoce como peso, w, del objeto, dada por w 5 mg

[4.6]

donde g es la aceleración de la gravedad. Unidades SI: newton (N) De la ecuación 4.5, otra definición del peso de un objeto con masa m puede ser rescrita como w5G

MT m r2

[4.7]

donde MT es la masa de la Tierra y r es la distancia desde el objeto al centro de la Tierra. Si el objeto está en reposo sobre la superficie de la Tierra, entonces r es igual al radio de la Tierra R T. Ya que r 2 está en el denominador de la ecuación 4.7, el peso disminuye conforme r aumenta. De tal modo que el peso de un objeto en la parte superior de una montaña es menor que el peso del mismo objeto a nivel del mar. Al comparar las ecuaciones 4.6 y 4.7, vemos que MT r2

[4.8]

A diferencia de la masa, el peso no es una propiedad inherente de un objeto a causa de que puede tomar valores diferentes, dependiendo del valor de g en una ubicación determinada. Por ejemplo, si un objeto tiene una masa de 70.0 kg, entonces su peso en una ubicación donde g 5 9.80 m/s2 es mg 5 686 N. En un globo a una gran altura, donde g podría ser 9.76 m/s2, el peso del objeto sería 683 N. Además el valor de g varía ligeramente debido a la densidad de la materia en un lugar determinado. En este texto, a menos que se indique lo contrario, el valor de g se entiende que es 9.80 m/s2, su valor cerca de la superficie de la Tierra. La ecuación 4.8 es un resultado general que se puede utilizar para calcular la aceleración de un objeto cayendo cerca de la superficie de cualquier objeto pesado si el radio y la masa del objeto más pesado son conocidos. Utilizando los valores en la tabla 7.3 (página 223) se puede demostrar que gSol 5 274 m/s2 y g Luna 5 1.62 m/s2. Un hecho importante es que, para cuerpos esféricos, las distancias son calculadas desde los centros de los objetos, una consecuencia de la ley de Gauss (se explica en el capítulo 15), que se cumple para ambas fuerzas gravitacional y eléctrica. ■ Examen rápido

4.2 ¿Qué tiene mayor valor, un newton de oro pesado en la Tierra o un newton de oro pesado en la Luna? a) El newton de oro en la Tierra. b) El newton de oro en la Luna. c) El valor es el mismo, a pesar de todo. 4.3 Responda a cada declaración, con Verdadero o Falso: a) Ninguna fuerza de gravedad actúa sobre un astronauta en una estación espacial en órbita. b) A una distancia de tres radios terrestres a partir del centro de La Tierra, la aceleración de la gravedad es 1/9 de su valor superficial. c) Si dos planetas son idénticos, cada uno con gravedad de superficie g y volumen V, se unen formando un planeta con volumen 2V y gravedad superficial 2g. d) Un kilogramo de oro puede tener mayor valor en la Tierra que en la Luna.

NASA/Eugene Cernan

g5G

La unidad de soporte de vida atada a la espalda del astronauta Harrison Schmitt pesaba 300 lb en la Tierra y tenía una masa de 136 kg. Durante su entrenamiento, se utilizó una maqueta de 50 libras con una masa de 23 kg. Aunque la maqueta tenía el mismo peso que la unidad real tendría en la Luna, la menor masa significaba que también tendría una baja inercia. El peso de la unidad es causado por la aceleración del campo de gravedad local, pero el astronauta también debe acelerar todo lo que transporta a fin de moverlo. En consecuencia, la unidad real utilizada en la Luna, con el mismo peso, pero una mayor inercia, fue más difícil de manejar para el astronauta que la maqueta de la unidad en la Tierra.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Fundamentos de Física. Volumen 1. 9a. Ed. Impreso. Raymond A. Serway & Chris Vuille by Cengage - Issuu