CAPÍTUL O
5
Problemas con valores iniciales para ecuaciones diferenciales ordinarias Introducción El movimiento de un péndulo puede describirse bajo ciertas suposiciones simplificadoras, por medio de la ecuación diferencial de segundo orden d2u g + sen u = 0, dt 2 L
L u
donde L es la longitud del péndulo g L 32.17 pies s2 es la constante gravitacional de la Tierra y u es el ángulo que forma el péndulo con la vertical. Si además especificamos la posición del péndulo al momento de iniciar el movimiento, u( t0 ) = u0 y su velocidad en ese momento u (t0 ) = u0, tendremos lo que se conoce con el nombre de problema con valores iniciales. Con el fin de simplificar este problema a uno lineal con valores iniciales, para valores pequeños de u, podemos emplear la aproximación u ≈ sen u d2u g + u = 0, 2 dt L
u( t0 ) = u0 ,
u (t0 ) = u0 .
con el fin de resolver este problema por medio de un método estándar de ecuaciones diferenciales. Para valores mayores de u no es razonable suponer que u = sen u, así que deben utilizarse métodos de aproximación. En el ejercicio 8 de la sección 5.9 se incluye un problema de este tipo. En cualquier libro sobre ecuaciones diferenciales encontrará explicaciones amplias acerca de varios métodos para obtener explícitamente soluciones a problemas con valores iniciales de primer orden. Pero, en la práctica, pocos de los problemas que se presentan en el estudio de los fenómenos físicos pueden resolverse con exactitud. 259