Targeted Seed Aid and Seed-System Interventions

Page 7

Analyzing Farmers’ Seed Systems: Some Conceptual Components Shawn McGuire

Technology and Agrarian Development, Wageningen University

Introduction: Systems approaches and seed systems Considering the various processes involved in seed provision, selection, and storage as a system permits a holistic analysis of strengths and weaknesses, and possibly helps us choose more appropriate seed interventions. This approach has been successfully applied to ecosystem management, so here I briefly introduce the field of ecosystem health, to draw possible parallels. In recent years, the growing field of ecosystem health has applied systems analysis to the environment and to agriculture in order to assess (and maintain) the “health” of these systems (e.g., Schaeffer et al. 1988; Okey 1996). The goal is to define health in an operational manner, based as much as possible on objective criteria, so that analysis can determine the important components and thus indicate possible interventions to help maintain health (Rapport 1998). This is explicitly normative, often defining health in terms of the goods and services these systems provide humans.1 Health also reflects how these systems react to stress. Some desired parameters include the following:

• • • • • •

stability resilience sustainability diversity efficiency equity

For most natural (relatively unmanaged) ecosystems, key processes can be readily identified, and the health or sustainability of the system can be reflected by how well the structure and function of these processes are maintained. Agroecosystems, however, are more complex. Along with ecological processes, cultural, social, and economic dimensions interact. Agroecosystems are thus a good example of an “emergent complex system,” since structure and function alone cannot fully explain all the interactions between practices, processes, and culture (Waltner-Toews and Wall 1997). Hierarchy can help make sense of such complex systems, partly reflecting how biological and social processes organize themselves in space and time (farm à community à valley à region, or individual à family à community) and partly as a methodological tool to help us grasp complexity (e.g. Checkland 1981; O’Neil et al. 1986). Here, hierarchy does not imply a particular chain of control. This approach could be usefully applied to farmers’ seed systems. The parameters listed above have often been ascribed to healthy farmer seed systems (e.g., resilience, efficiency), or are seen as important development goals (e.g., equity). As for agroecosystems, no single factor determines farmers’ seed systems: they reflect complex interactions between biological, economic, and social processes. Hierarchy is also important: different scales of space and time have a great bearing on how key seed-system processes appear (e.g., rates of adoption, seed diffusion, or genetic change). Like ecosystem health, analysis could best proceed by identifying key indicators for health. But to do that, there needs to be a better understand-

1. This approach has recently become part of mainstream conservation policy, where the Convention of Biodiversity has adopted the “ecosystem approach” as its conceptual framework and now plans to focus efforts on maintaining key ecosystem processes that provide crucial goods and services to humanity (D. Cooper, personal communication, 1999).

1


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.