Volume 2: Chapters 11-14

Page 288

© 2011 BlackLight Power, Inc. All rights reserved.

More Polyatomic Molecules and Hydrocarbons

659

From Eqs. (14.620-14.622), the total energy of each 12CH 2 is

EalkaneT  osc  12CH 2   49.66493 eV  Ealkane osc  12CH 2  (14.623)

1    49.66493 eV  2  0.25017 eV   0.35532 eV    49.80996 eV 2   k where e given by Eq. (13.458) was used for the  term.

The derivation of the total CH 2 bond dissociation energy, EDalkane  12CH 2  follows from that of the bond dissociation

energy of dihydrogen carbide radical, ED  12CH 2  , given by Eqs. (13.524-13.527). EDalkane  12CH 2  is given by the sum of the initial C 2 sp 3 HO energy, E  C , 2 sp 3  (Eq. (14.146)), and two times the energy of the hydrogen atom, E  H  (Eq. (13.154)),

minus the sum of EalkaneT  osc  12CH 2  (Eq. (14.623)) and E (magnetic) (Eq. (13.524)): EDalkane  12CH 2   E  C , 2sp 3   2 E ( H )  EalkaneT osc  12CH 2   E  magnetic 

Thus, the total CH 2 bond dissociation energy, EDalkane  CH 2  is

(14.624)

12

12

EDalkane  12CH 2    14.63489 eV  2 13.59844 eV    EalkaneT  osc  12CH 2   E  magnetic 

 41.83177 eV   49.80996 eV  0.14803 eV   7.83016 eV

(14.625)

SUM OF THE ENERGIES OF THE C  C  MOs AND THE HOs OF CONTINUOUSCHAIN ALKANES

The energy components of Ve , V p , T , Vm , and ET of the C  C -bond MOs are the same as those of the CH MO except that energy of the Calkane 2 sp 3 HO is used. The energies of each C  C -bond MO are given by the substitution of the semiprincipal axes (Eqs. (14.523-14.524) and (14.528)) into the energy equations of the CH MO (Eqs. (13.449-13.453)), with the exception that E  Calkane , 2 sp 3  (Eq. (14.512)) replaces E  C , 2 sp 3  in Eq. (13.453). The total number of C  C bonds of Cn H 2 n  2 is n  1 .

Thus, the energies of the n  1 bonds is given by Ve   n  1 0.91771 Vp 

 n  1 e2 8 0 a 2  b 2

2e2

8 0 a 2  b 2

a  a 2  b2 a  a 2  b2

   n  1 28.79214 eV

  n  1 9.33352 eV

T   n  1 0.91771

2

2me a a 2  b 2

Vm   n  1 0.91771

ln

2

4me a a 2  b 2

a  a 2  b2 a  a 2  b2

ln

a  a 2  b2 a  a 2  b2

(14.626) (14.627)

  n  1 6.77464 eV    n  1 3.38732 eV

(14.628) (14.629)

 n  1 e2

 1 a0  a  c '   (14.630)  0.91771  2  2 a  ln a  c '  1  15.56407 eV    n  1 31.63537 eV     is the total energy of the C  C  MOs given by Eq. (14.520) which is reiteratively matched to Eq.

ETalkane  C  C ,    

where ETalkane  C  C ,  

ln

8 0 c '

(13.75) within five-significant-figure round off error. Since there are two carbon atoms per bond, the number of C  C bonds is n  1 , and the energy change of each C 2 sp 3

shell due to the decrease in radius with the formation of each C  C -bond MO is ETalkane  C  C , 2 sp 3  (Eq. (14.517)), the total energy of the C  C -bond MOs, ETalkane  C  C  , is given by the sum of 2  n  1 ETalkane  C  C , 2 sp3  and ETalkane  C  C ,   , the 

MO contribution given by Eq. (14.630):


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.