Estadísticamente hablando Dossier para docentes Por: Berenice Belmudes, Natalia Daniel, María Celeste García Orfanó y Constanza Lidueña. Áreas que se encuentran analizadas: Ciencias Sociales y Matemática. En este trabajo, nos proponemos
“salte” más a la vista y aquella que
recorrer una secuencia de Ciencias
requiera un trabajo profundo de análisis),
Sociales y detenernos específicamente
sean críticos con la información que
en los gráficos o cuadros que se
encuentran presentada de esta manera,
proponen en ella para ampliar y aportar
puedan comprender las limitaciones de
nueva información. Se profundizará su
los distintos modos de representar y
análisis
puedan seleccionar ellos mismos qué
y
se
pensarán
actividades
enriquecedoras para realizar a partir de
gráficos
ellos desde la Matemática. Con esto, se
determinados datos de la mejor manera
apuntará
mayor
posible. En este recorrido, será necesario
comprensión de los gráficos y de la
también incluir conocimientos vinculados
información que buscan comunicar, al
a la proporcionalidad y la geometría
tiempo
(medición de ángulos, por ejemplo).
a
que
aprendizajes
lograr
se de
una
potenciarán
los
les
La
conocimientos
permiten
intención
de
organizar
“atravesar
matemáticamente” esta secuencia de
estadísticos. Según se señala en el Diseño
Ciencias Sociales parte de pensar a los
Curricular y los Cuadernos para el Aula,
conocimientos
los
la
herramientas que pueden ser útiles y
estadística han “invadido” el mundo, es
necesarias a la hora de comprender
decir, se encuentran presentes en la vida
fenómenos sociales. En este caso, para
cotidiana, aparecen constantemente en
comprender los cambios que el avance
los medios masivos de comunicación,
de
sirven de herramientas a todas las
pampeana
ciencias. Y es en este sentido que se
presentan diversos gráficos y cuadros.
vuelve imperativo darles un lugar en la
Profundizar
escuela. Allí debemos apuntar a que los
Matemática permite “exprimir” toda la
chicos comprendan distintos tipos de
información que se pueda a partir de
cuadros
extraer
ellos, al tiempo que se trabajan los
información a partir de ellos (aquella que
conocimientos estadísticos necesarios
conocimientos
y
gráficos,
propios
puedan
de
la
soja y
matemáticos
provocó en
su
en
todo
trabajo
el
como
la
región
país,
desde
se
la
1
para afilar la mirada, transformar la
ideas
y,
¿por
qué
no?,
información, construir nuevos gráficos,
cuestionamiento de las mismas.
al
encontrar errores y limitaciones. Será importante posicionar a los conocimientos
estadísticos
como
La
enseñanza
de
la
Estadística.
Algunas definiciones
necesarios para profundizar las lecturas de cuadros y gráficos en particular, al
Teniendo
en
cuenta
lo
permitir su lectura crítica, y de los hechos
mencionado en el Diseño Curricular de la
sociales en general, para lograr una
Ciudad de Buenos Aires en relación a los
mayor comprensión de los mismos. En
conocimientos
este
de
últimos tiempos, variados conocimientos
necesidad de los conocimientos, señala
propios de la estadística han "invadido"
Panizza (2004) que “la “situación” se
el
organiza
el
encuestas se presentan en diagramas
conocimiento al que se apunta sea
circulares, numerosa información (de
necesario para la resolución, en el
índole social, cultural, política, deportiva)
sentido de que la situación “(...) no puede
aparece en diferentes tipos de tablas o
ser dominada de manera conveniente sin
gráficos. Muchas instancias de la vida
la
los
social se ven influidas por este tipo de
conocimientos o del saber que se
conocimiento. Se usa como un nuevo
pretende (...)” .
lenguaje, como una manera económica
Por último, la intención de realizar un
de
dossier para docentes, va de la mano de
instrumento para indicar el desarrollo o la
una convicción: la tarea de los y las
evolución de ciertos procesos, etcétera”
docentes no debe ser una tarea solitaria.
(2004:595).
sentido,
sobre el
de
puesta
manera
en
carácter
tal
práctica
que
de
La comunicación y circulación de ideas, el
intercambio,
la
producción
mundo.
estadísticos
Los
presentar
“...En
resultados
muchos
datos,
de
los
las
como
Para comunicar la información
de
obtenida, y realizar un análisis más
conocimiento debe ser fomentada como
rápido de los datos, se pueden realizar
parte del rol docente. Nada se empieza a
distintos tipos de gráficos.
pensar de cero, todo proyecto puede
En los medios de comunicación
apoyarse en otros, la copia (que no es
es frecuente encontrar representaciones
calco) puede y debe ser más que válida.
que permiten entender con un golpe de
Con
docentes
vista la información que se quiere
apuntamos a promover la difusión de
transmitir. En estos casos es importante
un
dossier
para
2
analizar
con
cuidado
dicha
representación ya que el uso que se
proporcional
la
frecuencia
correspondiente.
haga de la escala puede dar lugar a interpretaciones erróneas.
a
La Matemática aparece como una herramienta útil que permite modelizar
Los gráficos de barras se utilizan
algunos aspectos de los fenómenos en
para representar variables cualitatitivas o
estudio. Los contenidos matemáticos
cuantitativas. En ellos, la altura de cada
abordados están en función del texto que
barra es proporcional al valor de la
los acompaña y básicamente refieren al
variable
cálculo de proporciones, tasas e índices,
o
a
la
frecuencia
correspondiente. Este tipo de gráficos
y la interpretación de gráficos y tablas.
también permite visualizar la evolución
Es
así
que
trabajaremos
en
de un fenómeno durante un cierto
relación a estos conocimientos ya que
período de tiempo.
son
En un pictograma se utilizan
nuevos
para
desarrollando
los
estudiantes,
actividades
que
les
imágenes alusivas a la información que
permitan interpretar, producir y dominar
se presenta, que se repiten o agrandan
este
proporcionalmente a los valores que
atención a lo relacionado con las falacias
representan. En general, estos gráficos
que permiten las estadísticas, según
son poco precisos.
quién sea el encargado de "manipular"
En los gráficos de sectores, el ángulo
central
proporcional
de a
cada la
sector
es
contenido.
Poniendo
especial
los datos y la información, y la inferencia que
quiera
justificar.
Es
importante
frecuencia
reflexionar sobre la posibilidad de que la
correspondiente. Este tipo de gráficos es
construcción de gráficos con los cuales
adecuado para realizar comparaciones
se representa la información recabada
entre las partes y el total o entre
sea tendenciosa, es decir, que busque
situaciones similares representadas con
resaltar
círculos de igual diámetro.
Dominar esta cuestión permitirá ser más
Los histogramas se usan para representar
variables
cuantitativas
continuas, o discretas cuando toman
algún
hecho
en
particular.
riguroso en el estudio de los datos, las informaciones y las representaciones y gráficos.
muchos valores, lo que lleva a agrupar los datos en clases. Cada clase, se representa con un rectángulo de área
3
Secuencia de Ciencias Sociales “La modernización del campo pampeano” Cuadernillos Horizontes El objetivo de la secuencia es que los alumnos puedan analizar a través de diferentes fuentes cómo el campo argentino ha
● El campo en la Argentina ha
sufrido transformaciones a lo largo de las
sufrido
últimas décadas. Los textos informativos
1970 hasta la actualidad en sus
están
territorios y en el tipo de cultivos.
acompañados
de
imágenes,
modificaciones
cuadros, gráficos de barra, de torta y ejes
Esto
impactó
a
los
cartesianos. La lectura de los mismos
sociales intervinientes.
desde
actores
propone que los estudiantes enriquezcan
● El incremento del cultivo de la
la mirada sobre el tema analizado o
soja en los últimos años ha
confirmen estadísticamente lo que se
modificado las plantaciones de
está diciendo. Será importante que este
otros cultivos, desplazándolos en
trabajo con los cuadros y gráficos esté
algunos casos.
vinculado con el área de Matemática
● El contexto internacional provocó
para poder darle sentido al trabajo
que la Argentina tuviera que
realizado y lograr extraer de ellos la
insertarse como país exportador
mayor cantidad de información posible.
de soja. ● El uso de la tecnología favorece a
Con esta secuencia los niños llegarán a
la producción agrícola y provoca
las siguientes ideas:
cambios en las zonas rurales.
Secuencia de actividades propuestas para Matemática enmarcadas en los siguientes alcances de contenidos: Para 7mo. Grado:
Resolución de problemas que exijan la interpretación y búsqueda de información en histogramas y gráficos circulares.
Análisis de las relaciones entre el valor del ángulo, el porcentaje y el gráfico circular. 4
Identificación de ciertas deformaciones en la información que comunica un gráfico, particularmente al manipular las unidades que se utilizan en las representaciones de los datos. Por ejemplo: Los siguientes gráficos representan el aumento de la desocupación entre enero y diciembre del último año: ¿Cómo se explica el hecho de que en ambos gráficos se lee que la desocupación creció en 10.000 y, sin embargo, una recta es más empinada que la otra?
Para 6to. Grado:
Resolución de problemas que demanden interpretar información organizada en pictogramas.
Identificación de ventajas y desventajas, similitudes y diferencias entre las diversas maneras en que es posible organizar y representar la información.
Selección de la organización más pertinente en función del problema a resolver.
Resolución de problemas que exijan interpretar y buscar información organizada en tablas de frecuencias, cuadros de doble entrada o diagramas de barras.
Análisis de las diferencias y similitudes entre estas diferentes maneras de organizar la información.
A continuación, se analizarán algunas de las actividades propuestas en la secuencia de Ciencias Sociales.
GRÁFICO 1
Este gráfico amplía la información que el texto brinda. Pero no es indispensable su lectura para comprender lo planteado en el texto informativo de la secuencia. Creemos que no es necesario su análisis en este momento. Pero es importante que, si la decisión didáctica es utilizarlo tal como está propuesto, el análisis esté mediado por el docente dado que puede resultar compleja su interpretación porque muestra una evolución en porcentajes y ésta no es de simple observación. ¿Qué intenta mostrar este gráfico? Se puede observar la evolución de la superficie dedicada a los cultivos anuales, utilizados para la alimentación del ganado vacuno, en relación con las pasturas y los campos naturales. 5
6
GRテ:ICO 2
7
Esta actividad plantea tres preguntas que los alumnos deben responder a partir de la lectura de estos dos cuadros y de un texto informativo, relacionadas con los granos más cultivados en 1970 y en la actualidad, y con los cambios tecnológicos que incorporó la soja. El primero, si bien permite visualizar el avance de la producción sojera año a año entre 1970 y 2007, no permite responder ninguna de estas preguntas si no se lo mira en conjunto con los gráficos de torta. Dada la complejidad del gráfico, proponemos abordarlo en dos momentos distintos de la secuencia. Intervención Matemática Contenidos: ● Interpretación y búsqueda de información en gráficos de coordenadas. ● Identificación de ventajas y desventajas, similitudes y diferencias entre las diversas maneras en que es posible organizar y representar la información. En un primer momento, proponiendo una lectura más bien “superficial”, apuntaríamos a que los chicos puedan visualizar que los millones de toneladas de soja cultivados van aumentando con el paso de los años. Sin embargo, en un segundo momento y ya llegando al final de la secuencia, volveríamos al mismo cuadro para ponerlo en cuestión a través de las siguientes preguntas: - ¿Qué información permite conocer este gráfico? ¿Se puede saber cuáles fueron los millones de toneladas cultivadas en el año 2000? ¿Se puede saber qué ocurrió entre 1996 y 1997? ¿Por qué? Se pensará entonces con los chicos que la unión de esos puntos, tal como se observa en el gráfico, no tiene sentido matemáticamente, pero sí en Ciencias Sociales, a fin de comunicar la evolución que tuvo la producción de soja a lo largo de los años. También se les preguntará a los chicos: - ¿Qué gráfico similar sí tendría sentido realizar desde la Matemática? Buscaremos concluir que tendrían que haberse dibujado tan sólo los puntos, sin unirlos. A su vez, se pensará de qué otra forma se podría representar esa misma información y se construirá en conjunto un gráfico de barras. El segundo gráfico expone los cambios en la producción agrícola de nuestro país, mostrando qué fue ocurriendo con algunos granos entre un período de años y el otro. En los gráficos de torta se pueden visualizar las distintas porciones, con diferentes colores y sus referencias debajo. Podríamos pensar con los estudiantes, de qué manera se pueden conocer los cambios y avances de los distintos cultivos, qué se debe mirar de los gráficos para obtener la información que preciso para responder las preguntas. A simple vista, el gráfico permite rápidamente identificar el avance agrícola de algunos cultivos y la disminución de otros. Es aquí donde el trabajo matemático cobra sentido y se podrá trabajar con los niños de manera más profunda para analizarlo y a su vez, comprender cómo se construyen estos gráficos.
8
Intervención Matemática Contenidos: ● Interpretación y búsqueda de información en gráficos circulares. ● Análisis de relaciones entre el valor del ángulo, el porcentaje y el gráfico circular. A partir de la observación del gráfico, les preguntaremos a los chicos: - ¿Qué representan los distintos colores en el gráfico? - ¿La producción agrícola de qué granos aumentó? ¿Cuáles disminuyeron? - ¿Cuál es la información que resalta al comparar estos dos gráficos? A partir de aquí apuntaremos a identificar la soja como el grano que representa uno de los mayores cambios entre un gráfico y el otro. A partir de estos gráficos, tal como está presentada la información ¿sabemos exactamente cómo cambió el porcentaje que representa la soja entre un año y el otro, en relación al resto de los granos que se mencionan? Para poder cuantificar esta variación, les propondremos a los chicos comparar las aberturas que representan la producción de soja en uno y otro período. Para esto, se trabajará sobre la necesidad de extender los lados que la contienen para poder medir la abertura con el transportador, dado que la medida del ángulo no se modifica. A su vez, para saber qué porcentaje del total representa esa abertura, se revisarán cuestiones de proporcionalidad: si los 360° son el 100%, ¿el ángulo que representa la soja equivale a qué porcentaje del total? Luego, les preguntaremos a los chicos: ¿en los casos de qué otras producciones se pueden observar cambios significativos entre un período y el otro? Se buscará que identifiquen, por ejemplo, el caso del Centeno y el sorgo, que tienen ambos disminuciones significativas. También se propondrá conocer el porcentaje que representan en uno y otro período
9
GRテ:ICO 3
10
Intervención matemática Contenidos: ● Búsqueda e interpretación de datos en gráfico de barras. ● Análisis de la forma en la cual la información es presentada. ● Análisis de falencias y errores del gráfico. A partir de este gráfico de barras, realizaríamos diversas intervenciones. En primer lugar, eliminaríamos la información que figura en la parte inferior del gráfico que indica qué permite apreciar el mismo respecto de la producción sojera (“Este gráfico de barras permite apreciar el aumento de la producción sojera y la expansión agrícola en provincias no pampeanas en los últimos años”). Tomaríamos esta decisión por dos motivos: por un lado, porque decirles directamente a los chicos cuál es la conclusión que se puede sacar a partir de un gráfico le quita sentido a su análisis, y por el otro, porque no es preciso en la información que indica se puede extraer de él (el gráfico no ilustra únicamente provincias que no pertenecen a la región pampeana, más bien todo lo contrario). Por otra parte, con el objetivo de que lean la información del gráfico y saquen conclusiones, les haríamos a los chicos las siguientes preguntas: - ¿Qué representan los distintos colores en el gráfico? ¿Qué representa la altura de cada barra? ¿En qué parte del gráfico se encuentran esos valores? - ¿Cuánto varió la superficie cultivada de soja en cada provincia o región, de un año al otro? ¿En qué provincia o región se dio la mayor variación? ¿Es esa misma la que posee la mayor cantidad de hectáreas cultivadas? ¿En qué partes del gráfico están ubicando esa información? - ¿El gráfico permite saber la cantidad de hectáreas de soja cultivadas en Salta? ¿Por qué? (Con esta pregunta se apuntará a problematizar la información que el gráfico no permite extraer, por haberse agrupado los casos de algunas provincias). - En el gráfico se indica que la cantidad de hectáreas cultivadas en el año 2003 es 12.3400.000 (así figura), y que en el año 2008 es 16.000.000. ¿El gráfico refleja estos datos? ¿En dónde encuentran esa información? ¿Coincide con lo que venimos estudiando? ¿Cómo podemos saber, a partir del gráfico, cuál es la cantidad de hectáreas de soja cultivadas en el año 2003? Se les propondrá también analizar dos gráficos de torta (uno para cada año) que ilustran el porcentaje de las hectáreas totales cultivadas que le corresponde a cada provincia o región. Se compararán ambos gráficos y se les preguntará entonces por qué ambos son tan parecidos si en los casos de todas las provincias o regiones la cantidad de hectáreas cultivadas aumentó. Se pensará en conjunto también cuáles son los pasos a seguir para armar esos gráficos, con qué datos del gráfico de barras, realizando qué cálculos.
11
Finalmente, se les preguntará a los chicos qué conclusión permite extraer el gráfico sobre la producción sojera en estas provincias y regiones, y dónde encuentran esa información en el gráfico.
12
CUADRO 4
Como indica su título, este cuadro intenta mostrar los cambios poblacionales en las provincias de la región pampeana, comparando las poblaciones urbana y rural en el año 1991 y 2001. Un trabajo matemático en relación a este cuadro, permitirá extraer de él gran cantidad de información.
Intervención matemática Contenidos: Interpretación y búsqueda de información organizada en cuadros. Construcción de gráficos circulares a partir de los datos de las columnas del cuadro. Análisis de la relación entre el porcentaje, el valor del ángulo y los gráficos circulares. Identificación de ventajas y desventajas, similitudes y diferencias entre las diversas maneras en que es posible organizar y representar la información. Tal como está presentada la información, se les puede preguntar a los estudiantes: - ¿Dónde se concentra la mayor cantidad de población urbana y rural en ambos años? ¿Eso se mantiene o no? Y luego, ¿qué porcentaje de la población rural y urbana total de la región pampeana representaba la población de Buenos Aires en 1991 y en el 2001? Será interesante que los estudiantes puedan identificar en el cuadro cuál es la información que necesitan para esto (por ejemplo, para el caso de la población urbana de Buenos Aires en 1991, 18.388.845 es el 100% de la población de la región, la población urbana está conformada por 12.594.974 personas, que representan entonces el 68,5% de la población urbana total en la región ese año). - ¿En los casos de qué provincias aumenta la población urbana entre un año y el otro? ¿En cuáles disminuye? ¿Qué ocurre con la población rural entre un año y el otro? A partir de estas preguntas, buscaremos encontrar elementos en común a los casos de todas las provincias. - En relación a las cantidades de población totales en ambos períodos y en ambos espacios, ¿dónde pueden identificar los mayores cambios?
13
Sin embargo, podría hacerse un trabajo comparativo también interesante si a partir de los datos del cuadro, se armara un cuadro con los porcentajes de población urbana y rural en cada provincia y año. Los números tal cual están presentados no permiten hacer ciertas comparaciones fácilmente. Año
1991
Año
2001
Porcentaje de población
urbana
rural
urbana
rural
Bs As
51
49
66
33
Córdoba
86
14
89
11
La Pampa
74
26
81
19
Entre Ríos
78
22
83
17
Santa Fe
87
13
89
11
Podría confeccionarse con los estudiantes un cuadro similar a este. Por un lado, esto permitiría poner en juego los conocimientos sobre proporcionalidad y porcentaje, necesarios para poder realizar ese “pasaje”. Por ejemplo, para saber cuál es el total de la población de una provincia en uno de los años, hay que sumar las poblaciones urbana y rural; ese es el 100% de la población provincial. Tomando en cuenta eso, puede calcularse qué porcentaje representan la población rural y urbana en relación al total de la población de la provincia. Por otro lado, es posible pensar con los estudiantes qué información es más fácil de visualizar presentada de esta manera. Por ejemplo, la provincia cuya división poblacional urbana y rural sufrió mayores cambios, las provincias en las que los cambios no fueron tan significativos en comparación a otras, las provincias con mayor diferencia de población entre el espacio urbano y el espacio rural. A su vez, para visualizar de otra manera cómo se distribuye la población de la región pampeana en las distintas provincias que la componen, podría realizarse con los chicos un gráfico de torta. El grado podría dividirse en cuatro grupos, cada uno de ellos destinado a pensar y armar el gráfico para la población rural en 1991, la población urbana en ese mismo año, la población rural en 2001 y la población urbana de ese año. Esta tarea daría lugar a discusiones interesantes vinculadas al análisis de las relaciones entre el valor del ángulo, el porcentaje y el gráfico circular. También permitirían poner en cuestión cuáles son los datos que “saltan” primero a la vista o llaman la atención (por ejemplo, que la población urbana de Buenos Aires en el año 1991 supera ampliamente a la población urbana de las demás provincias).
14
Finalmente, relacionando toda esta información con lo trabajado hasta el momento en la secuencia, se intentará reflexionar con los chicos qué relación pueden encontrar entre el avance de la soja y los cambios poblacionales que muestran los distintos gráficos.
Dada la complejidad de la secuencia planteada, proponemos realizar previamente con los chicos algunas de las siguientes actividades sugeridas en los Cuadernos para el Aula. -Puedan obtener y organizar datos http://www.me.gov.ar/curriform/nap/matematica4_final.pdf Páginas 115 y 116. -Se aproximen a las condiciones del sistema de ejes cartesianos: http://www.me.gov.ar/curriform/nap/mate5_final.pdf Páginas 134 al 136. -Puedan representar información y apreciar variaciones en forma rápida y visual: http://www.me.gov.ar/curriform/nap/matematica06.pdf Páginas 118 al 121.
Algunas conclusiones finales Al realizar este trabajo, el hecho de
alguna
haber analizado los gráficos y cuadros
elementos en el gráfico que permitan
desde la Matemática y con profundidad,
tener un control sobre esto?
nos alertó sobre los cuidados que
Por otro lado, frente a la fragmentación
debemos tener al aprovecharlos en
de saberes en el mundo en que vivimos y
nuestras
en el mundo escolar, nos atrevimos a
buscan
clases.
¿Qué
mostrar?
información?
información
¿Aportan
¿Qué
nueva
representaciones
poner
información
en
Matemática
diálogo y
errónea?
contenidos
Ciencias
¿Hay
de
Sociales,
permiten ilustrar de la mejor manera
buscando que se potencien entre sí.
posible la información? ¿La organización
Creemos que es una deuda que tenemos
de los datos es coherente? (Por ejemplo,
como docentes intentar cada vez más
no
se
pensar proyectos que reúnan distintas
comparara la situación de una provincia
áreas y en conjunto con otros docentes.
con toda una región, sin que se justificara
Esto, siempre y cuando el trabajo tenga
la toma de esa decisión). ¿Contienen
un sentido real y apunte a enriquecer la
nos
resultó
coherente
que
15
mirada de los chicos sobre un mismo objeto o fenómeno que se estudia. Sabemos que ésta no es tarea sencilla, que los espacios de reunión o diálogo en la escuela son escasos, que los tiempos muchas favorecen
veces un
no
coinciden
trabajo
en
y
no
paralelo.
Apostamos a esto también, como una forma de enriquecer, no sólo la mirada de los chicos, sino también la mirada de los propios docentes que se encuentran, intercambian y reflexionan en conjunto sobre sus prácticas.
16