Evaluation of Horizontal Curve Superelevation

Page 1

EvaluationofHorizontalCurveSuperelevation

Submittedto:

Submittedby: Dr.JitenShah

AnimeshRathi (171010012001) CourseInstructor

Abstract

AsheeshKumar (171010012002)

AyushJai (171010012003) AyushKumar (171010012004)

PranathiPabbati (171010012008)

Riding comfortably and safely through horizontal curves in roadways should be provided by superelevation.Duringthemaintenanceofroadthereisachancethatsuperelevationgetsaltered. Thus,assessingaroad'scrossslopealongcurvesisofgreatimportance.Inthissurvey,horizontal curvesuperelevationwasmeasurednearAnupam Cinema.Itwas chosenbecauseit was nearto ourcollegeandthesitewaswithpropercurvaturewithpropertraffic.Basedonsurveyresultsand analysis, it is concluded that the curvature was designed as per the guidelines of the IRC with radiusofcurvatureof358m,designspeedof45km/hr.andthesuper-elevation3.7%whichwas acceptable. The road also had the widening of 4.25 m. In this case, the assessment of the superelevationshouldbedoneinaregulartimeintervalsoastoreducefatalaccidentsthatoccur duetoincorrectsuperelevationatthecurvatureoftheroad.

1. Introduction

1.1General

Providingcomfortandsafetyareimportantparametersinhorizontalcurves.Thebalance ofthevehiclewhilepassingthroughacurveissecuredbysuperelevation.Superelevation is directly dependent upon how the pavement is constructed. Lack of attention to road construction or inappropriate implementation of asphalt overlay during the maintenance periodresultsinreducedcomfortandsafetyofthecurves.

There are several methods for collecting cross slope data, but surveying techniques to collect data, accuracy, cost, speed of collection, and safety considerations are varied. Conventional survey techniques use manual methods to collect coordinate points. Surveyors use levels, rods, and electronic devices for site measurement. The point and elevation data are extremely accurate; however, the time required for data collection coupledwithreducedsafetyandrestrictedtrafficoperationsmakesthisapproachinfeasible forlarge-scaleprojectdatabases.

Surveytechniquesinconcertwithhand-heldGPSequipmentcanprovideaccurateresults, buthavedisadvantagessimilartothoseofthemanualmethod.Locatingsurveyequipment in a static vehicle permits data collection with improved safety. The vehicle is typically positioned on the shoulder of roadway, and with the aid of an electronic data collector, disto-meter, notebook computer, and GPS unit, accurate results can be obtained for the pavementcrosssection.However,therequiredequipmentiscostly,andthevehiclecannot beinmotionduringdatacollection

1
Themaximumamountofthesuperelevationissubjecttothefollowingfactors: a. Theclimaticconditionsofthearea(frequencyandamountofsnowandice) b. Roadtype(mountainous,hillyorflat) c. Numberofheavyvehicles d. Designlimitationsintermsofprovidingadequatespacetoexecutesuperelevation andconditionsforsurfacewaterdrainage 1.2Definitions

a. Superelevation: Bankingofaroadwayalongahorizontalcurvesomotoristscan safely and comfortably maneuver the curve at reasonable speeds. A steeper superelevation rate is required as speeds increase or horizontal curves become tighter

��+��=

b. Design Speed: It is a selected speed used to determine the various geometric features of theroadway. Theassumed design speed should be a logicalonewith respectto thetopography,anticipatedoperating speed,theadjacentlanduse, and thefunctionalclassificationofthehighway.

c. Camber:Itisthetransverseslopeprovidedtotheroadsurfaceforthedrainageof rainwaterforthebetterperformanceoftheroad.

d. SideFriction:Thefrictionforcebetweenavehicle’stiresandthepavementwhich preventsthevehiclefromslidingofftheroadway.

e. AxisofRotation:Thepointonthecrosssectionaboutwhichtheroadwayisrotated toattainthedesiredsuperelevation.

f. SuperelevationRate(e):Thecrossslopeofthepavementatfullsuperelevation.

g. SuperelevationRunoffLength(L):Thelengthrequiredtochangethecrossslope from0%tothefullsuperelevationrate.

h. Tangent RunoutLength (x): Thelengthrequiredtochangethecrossslopefrom 0%tothenormalcrossslope.

i. Relative Gradient (G): Theslopeoftheedgeofpavementrelativetotheaxisof rotation.

j. Width(w):Thedistancefromtheaxisofrotationtotheoutsideedgeofthetraveled way.

k. Carriage Way: Itisthewidthoftheroadwhichisusedbythetrafficformoving onit.Itisgenerallycentralportionofthetotallandwidthandispavedandsurfaced withbituminousconcreteforservicetotheroadusers.

2. ObjectivesandScopeoftheStudy

ObjectiveofstudyingandprovidingSuperelevationistoovercomethefollowing:

i. Effect of centrifugal force acting on the moving vehicle to pull out the same outward on a horizontalcurve.

ii. Helpafast-movingvehicletonegotiatecurvedpathwithoutoverturningandskidding.

iii. Ensuresafetyofthefast-movingtraffic.

iv. Preventdamagingeffectontheroadsurfaceduetoimproperdistributionofload.

2

3.BackgroundoftheStudy

TheareaofoursurveywasnearAnupamCinemaasthislocationwasneartoourcollegeandthe sitewaswithpropercurvatureaswecanseefromthefigurewithoutanytypeofintersection.We collectedthedatai.e.speedofvehiclesinthemorninghourasitwillgivethehighestspeedof runningvehiclesbecauseofverylighttrafficwithrespecttothepeaktraffic.Asourtopicisthe designofsuperelevation,toconsiderthisweneeddesignspeedsoweareintendedtotakethe optimumspeed.

Figure1.StudyArea

Figure2.StudyArea

Figure3.RoadSideConditions

4.Methodology

Thespeedgunwasusedtomeasurethespeedofrunningvehicles.Tomeasurethewidthofthe carrywageweusedthemeasuringtapes.Atthesite,theexitingcamberandsuperelevationwere alsomeasured(ReferAnnexureI).Tomeasurethese,staffandthelaserlightwereused.Thedata collectedwasofmorninghours(6:40AMto7:35AM).

3
4 (a)Satelliteview (b)Physicalview Figure4.Existingroadsitecondition MeasuringTrafficflow-Inthissurveyweconsideredthetrafficinthemorninghours,sothatwe canobtainthehighestspeedofvehicles,asinthemorninghoursthereexitlighttraffic. Speedstudies-UsingRadarGunthespeedofvehiclesismeasured.(seeFig.5) Figure5.DatacollectionusingRadarGun 5.TrafficDataInterpretationandAnalysis 5.1.DataInterpretation ForDatacollectedrefertoAnnexureI.

ClassInterval (speedkm/hr.) Mid-Point Frequency

%Relative Frequency %Cumulative Frequency

15-19 17 5 3.185 3.185

20-24 22 19 12.102 15.287 25-29 27 40 25.477 40.764 30-34 32 43 27.388 68.152 35-39 37 26 16.561 84.713 40-44 42 12 7.643 92.356 45-49 47 8 5.095 97.451 50-54 52 2 1.273 98.724 55-59 57 2 1.273 99.997

Sum 157

Thegraphscorrespondingtothedatacollectedandinterpretedareasfollows:

5

Figure6.FrequencyCurve

Fromthisplotbetweenfrequencyandspeed,wegetthenormaldistribution,justlikeabellshape curve.

Figure7.CumulativeFrequencyCurve

TheS-curveisplottedbetween%cumulativefrequencyandspeedofvehicles.Fromthegraph weinferthatthedesignspeedi.e.95percentilespeedis=45km/hr.

6
3.185 15.787 40.764 68.152 84.713 92.35697.45198.72499.997 0 20 40 60 80 100 120 172227323742475257 % Cum. Freq Speed

5.3

DataAnalysis

Designspeed=45km/hr.(95th percentile)

emax(forplain)=0.07

fmax=0.15

Formulaformin.radius: ��+��= 0.07+0.15=(45) 127�� 0.22= 2025 127�� ��= 2055 127∗0.22 �� = 72.45��

Hencetheminimumradiusshouldbe72.45mforthisdesignspeed.

ForFrictionCalculation:

Radiusonsite=358m �� = 0.037 ��+��= �� 127��

0.037+��= (45) 127∗358 0.037+��= 2025 45466 0.037 + �� = 0.0445 �� = 0.007

7
8
��= �� 225��
Figure8.CalculationofRadius Radiusofcurvature358m,whichwasfoundusingCADsoftware. ��= 45 225∗358 ��= 2025 80550 ��=0.025����2.5% AsperIRCguidelinementionedinIRC:86-1983clause:10.2.1(pageno.14),forurbansection withfrequentintersectionitwillbedesirabletolimitthesuper-elevationto4%forconveniencein constructionandforfacilitatingeasyandsafeturningmovementofvehicles.
Herewefindthatf<fmaxwhichisgood. Calculationsforsuper-elevationasperIRCguidelines:
Thisvalueisgiventakingcentrifugalforcecorrespondingtothree-fourthofthedesignspeed. Wehavethedesignspeedof45km/hr.
Hereforthegivendesignspeed,asuper-elevationof2.5%mustbesufficient.

Theon-sitedatacollected:

��= 1.04 28.055 �� = 0.037 �� = 3.7%

Whichisalsogoodasthisvalueisinthelimitingrangeof4%.

Tojustifytheradiusofcurvatureforthisvalueofsuper-elevation,IRC:86-1983Figure2(page no.15),agraphisgivenforvariousdesignspeedandradiusofcurvature,andthedatacollected fromsiteliesinthatrange.

Figure9.Superelevationforvariousdesignspeeds

Wideningoftheroad:

Widthoftheroadwithnocurvature=23.805m

Widthoftheroadatthecurvature=28.055m

Herewecanseethedifferenceinthewidthiftheroadandthedifferenceis 28.055– 23805 = 4.25��onbothside

Whichisprovidedforsafeturningofvehiclesaswellasforpsychologicaleffect.

9

6. ProbableSourcesofError

a. Humanerrors

b. Pooralignmentofmeasuringdevices

c. Duetofaultorerrorinequipment

d. Due bad condition of road which prevented from getting actual design speed of vehicle

e. Errorinfindingradiusofcurvaturefromthesoftware

7. Conclusion

Superelevationisthebankingofaroadwayalongahorizontalcurvesomotoristscansafelyand comfortablymaneuverthecurveatreasonablespeeds.Superelevationdirectlydependsuponhow the pavement is constructed. Lack of attention to road construction or inappropriate implementationofasphaltoverlayduringthemaintenanceperiodresultsinreducedcomfortand safetyofthecurves.

Based on survey results and analysis, it is concluded that the curvaturewas designed as perthe guidelinesoftheIRCwithradiusofcurvatureof358mandthedesignspeedof45km/hr.andthe super-elevationwas3.7%whichwasacceptable.Theroadalsohadthewideningof4.25m. Thus,thisstudyconcludesthatthecurvatureissafeandappropriateforthehigh-speedvehicles.

10

Acknowledgement

Wewouldliketoexpressourdeepestappreciationtoallthosewhoprovidedusthepossibilityto complete this report. A special gratitude we give to our Transportation Engineering Course InstructorDr.JitenShahwhogaveustheopportunitytotakeupthisproject.Hiscontributionin stimulatingsuggestionsandencouragement,helpedustocoordinateourproject.

Furthermore,wewould alsoliketoacknowledgewithmuchappreciationtoLabAssistantswho gavethepermissiontouseallrequiredequipmentandthenecessarymaterialstocompletethetask.

Date:26th November2019

AnimeshRathi (171010012001)

AsheeshKumar (171010012002) AyushJai (171010012003)

AyushKumar (171010012004) PranathiPabbati (171010012008)

11

References

1. IRC:86-1983GeometricDesignStandardsforUrbanRoadsinPlains 2. IRC:73-1980GeometricDesignStandardsforRural(Non-Urban)Highways 3. Abbasghorbani,M.&BamdadZiksari,A.(2015).“EvaluationofHorizontalCurve Superelevation Using Road Surface Profiler” International Journal of Pavement ResearchandTechnology.Vol8.Pg.no.185-191. 4. https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_design speed.cfm 5. http://transportationengineering2012onwards.blogspot.com/2013/08/highwaygeometrics-camber-land-width.html

12

AnnexureI

A. SpeedData

Thespeedsofvehicles(km/hr.)arefollowing,collectedatthesiteinthemorninghours(6:40AM to7:35AM)usingthespeedgun:

OuterEdge: Two-Wheeler Three-wheeler Four-Wheeler Heavy Vehicles

36,33,33,33,23,34,52,23,51,39, 40,25,30,32,41,35,24,33,32,32, 35,45,32,32,29,29,21, 40,34,47,38,36,57

31,32,28,26,25,37,27,2 8,32,29,23,20,24,21,29 ,29,33,33,32,28,

48,35,41,34,28,35,2 7,23,34,36,40,42,56, 38,29,47,25,38,

29,35,29,34, 24,34,27,30, 28,34,19

InnerEdge: Two-Wheeler Three-Wheeler Four-Wheeler Heavy-Vehicles

30,26,39,31,23,21,37 ,36,34,31,42,35,44,28 48,25,24,19,41,33,29 31,35,27,30,32,45

33,29,18,20,25,29,29, 30,17,26,24,22,26,25, 22,20,30,30,28,36,29, 30

48,18,28,30,36,36,29, 36,36,39,36,30,30,27, 30,26,32

41,38,40,30,35,20,27, 26,17,32.

13
Figure10.Differenttypesofvehiclesindatacollected B. Existingsitesuperelevation
Radiusonsite=358m eonsite= [whereE=raise,b=widthoftheroad] �� = 1.04 28.055 �� = 0.037
Widthoftheroadwithnocurvature=23.805m Widthoftheroadatthecurvature=28.055m

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.