Cambridge International AS and A Level Mathematics Pure Mathematics 2 and 3

Page 175

Further algebra

P3 7

EXERCISE 7B

Simplify the expressions in questions 1 to 10. 1

3

5

2

5xy 3

x2 − 9 − 9x + 18

4

5x − 1 × x 2 + 6x + 9 x + 3 5x 2 + 4x − 1

4x 2 − 25 + 20x + 25

6

a 2 + a − 12 × 3 5 4a − 12

8

2p + 4 ÷ (p 2 − 4) 5

6a b x2

a 9b 2

4x 2

7

4x 2 − 9 ÷ 2x − 3 x 2 + 2x + 1 x 2 + x

9

a2 − b2 2a 2 + ab − b 2

10

15xy 2

x 2 + 8x + 16 × x 2 + 2x − 3 x 2 + 6x + 9 x 2 + 4x

In questions 11 to 24 write each of the expressions as a single fraction in its simplest form. 11

1 4x

1 5x

12

x − (x + 1) 3 4

13

a + 1 a +1 a −1

14

2 + 3 x−3 x−2

15

x2

x − 1 −4 x+2

16

17

2 − a a + 1 a2 + 1

19

x

21

2 3 + 3(x − 1) 2(x + 1)

22

23

2 − a−2 a + 2 2a 2 + a − 6

24

1 x

1

p2 p2 − 2 −1 p +1

p2

18

2y − 4 (y + 2)2 y + 4

20

2 − 3 b 2 + 2b + 1 b + 1 6 5(x

2) (x

2x 2)2

1 +1+ 1 x−2 x x+2

Partial fractions Sometimes, it is easier to deal with two or three simple separate fractions than it is to handle one more complicated one. For example: 1 (1 2x)(1 x) may be written as 2 – 1 . (1 2x) (1 x) 166


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Cambridge International AS and A Level Mathematics Pure Mathematics 2 and 3 by Ayman Alam - Issuu