Collective Intelligence in Design

Page 50

Early concept diagram for the building membrane installation at the University of Minnesota. The diagram maps the various informational organisms that inhabit the membrane, and the organisational logics by which they distribute and deposit bits and particles of visual data. The result is an artificial ecology of information that activates the building skin, transforming it into a dynamic and responsive index of internal and external activity.

Small Design Firm and Ben Rubin’s EAR Studio, both of which specialise in computation as well as information and interaction design, have recently been working collaboratively on several installation projects, each of which integrates lighting, sensing and programming technologies in the design of responsive and increasingly intelligent architectural display and information infrastructures. Any form of lighting, when considered to be a material in and of itself, and inherently malleable and reconfigurable, can be subject to complex but effective control protocols and thus altered accordingly. Using custom software integrated with various sensing technologies (for example, motion or proximity sensing), the projects illustrated here explore the potential of LED lighting strips by treating the qualities and intensities of colour and brightness of such lighting as variables for potential alteration. What distinguishes the LED strips from conventional lighting is the ability to control the entire display with the same accuracy as a computer screen or projection. To this extent, the display system can be seen as the visual output of an informational, or computational, control system. Software, in combination with various sensing infrastructures, absorbs, processes and distributes information into the lighting infrastructure, altering its

colour and intensity and transforming it into a dynamic and reflexive membrane of visual and graphic activity. The first of the collaborative projects, Facade Ecology, involved the development of a responsive building membrane for the University of Minnesota’s Molecular and Cellular Biology Building. Artist Ann Hamilton was commissioned by the university to create an installation that would work with and comment on the building. The proposed design integrates a number of technological systems, including an array of motion sensors distributed throughout the interior of the building. This sensing network collects and processes data related to the various activities taking place within the laboratories, such as patterns of use and occupancy based on movement. The motion-based information is then sent as raw data to a custom software interface which then interpolates that data, translating it into a set of instructions for the generation of light and colour. The new information, materialised in the form of colour and lighting patterns, is then distributed to a LED infrastructure embedded in the building’s exterior skin, allowing the overall design proposal to translate motion patterns into lighting patterns. By extension, the building’s skin is transformed into an active and responsive

47


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.