Position Paper on Hydrogen Economy

Page 76

POSITION PAPER ON HYDROGEN ECONOMY

While the cost of green hydrogen from renewable energy, such as dark fermentation of wastewater and biomass gasification varies from USD 0.15 – USD 1.57 per kg respectively, the cost of hydrogen from newer green hydrogen production technology from renewable energy such as microbial electrolysis of wastewater, photoelectrochemical and photosynthetic splitting of water are much higher, ranging from USD 15.70 – 24.20, which must be reduced by tenfold to USD 1.57-2.42 by 2050 through a research and development programme in order to be competitive with conventional steam reforming.

3.4.2

Centralised Off-site Hydrogen Production

Hydrogen could be produced in a centralised off-site or distributed on-site mode. Suppose hydrogen is produced offsite centrally on a large industrial scale from natural gas, the main problems are the transportation of hydrogen to the point of use at the petrol station and the decarbonisation of the hydrogen production process. The CCS method of decarbonisation had not been successfully proven to be commercially viable because it requires high demand for hydrogen and heavy investments in carbon dioxide pipelines to storage sites.

Figure 49: Cost of Green Hydrogen from Zero Carbon Renewable Energy

a.

Hydrogen Pipelines

For early adoption, the existing hydrogen pipeline network, now mainly for captive use in oil refineries and chemicals production, can be utilised for initial demonstrations to study the feasibility of hydrogen transportation via pipelines in Malaysia. Construction of new hydrogen pipelines requires a high capital investment and hydrogen’s energy-intensive nature limits its economic feasibility over only short distances. A 2006 study by the United Nations Environment Programme on the United States and Europe shows that even though there are hydrogen pipeline systems in operation, they are small in scale and none is more than 200 km long. Hydrogen transportation by land (road or rail) and water (barge) in cryogenic tanks to be vapourised on-site is generally considered as a less costly alternative.

56


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

REFERENCES

8min
pages 131-139

5.0 CONCLUSIONS

1min
page 130

Figure 61: 8i Ecosystem Analysis (ASM, 2020

1min
page 120

Figure 59: National Niche Areas across 10 socio-economic drivers (ASM, 2020

1min
page 118

Figure 58: 10-10 MySTIE Framework (source: ASM (2020

1min
page 117

4.3 13th & 14th Malaysia Plans 2026-2035 (Medium Term

5min
pages 105-110

4.4 15th, 16th, 17th & 18th Malaysia Plans 2036-2050 (Long Term

3min
pages 111-115

4.2 12th Malaysia Plan 2021-2025 (Short Term

4min
pages 101-104

Figure 56: Hydrogen Roadmap in 2020

1min
page 100

4.1.4 Strategy Recommendations - Hydrogen Economy Roadmap 2020

2min
pages 98-99

4.1.3 Barriers of Transition to Hydrogen Economy

2min
page 97

4.1.2 Potential for Malaysia to become a pioneering country in Hydrogen Economy

2min
page 96

4.1.1 Malaysian Hydrogen Economy Roadmap

2min
page 95

Figure 54: Average Solar Irradiance, kWh/m2/day

1min
page 84

Figure 52: Number of NGV Stations by States

3min
pages 81-82

Figure 55: Malaysia’s Hydrogen Roadmap 2006

9min
pages 87-93

Figure 53: Solar Irradiance Map of Malaysia

1min
page 83

Figure 50: Map of Hydrogen Refueling Stations in Asia

4min
pages 78-79

Figure 49: Cost of Green Hydrogen from Zero Carbon Renewable Energy

1min
page 76

Figure 46: Schematic of a Microbial Fuel Cell

1min
page 74

Figure 42: Hydrogen Production from Microbial Electrolysis Cell

5min
pages 69-70

Figure 44: Schematics of a Solid Oxide Fuel Cell

1min
page 72

Figure 41: Hydrogen Production from Direct and Indirect Bio-photolysis

1min
page 68

Figure 45: Schematics of a Direct Methanol Fuel Cell

2min
page 73

Figure 40: Basic Principles of PEC

1min
page 67

Figure 39: Layout of a Solid Oxide Electrolysis System

1min
page 66

Figure 38: Schematic Diagram of a PEM electrolysis system

1min
page 65

1. INTRODUCTION

5min
pages 22-25

Figure 22: Net Energy Metering (NEM) by Region

1min
page 42

Figure 35: Layout of alkaline electrolysis for AEL

1min
page 63

Figure 18: Malaysia’s petroleum production and consumption 2002-1016 (thousand barrels per day

1min
page 39

Figure 15: ASEAN Fossil Oil Reserve 2017 (Mtoe

1min
page 37

Figure 31: The Hydrogen Economy

1min
page 53

Figure 19: Natural gas resources and consumption by region, 2013

1min
page 40

3.2 Hydrogen Production and Storage Technology

1min
page 56
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.