Memoria sensor temperatura final

Page 1

CONTROL DE TEMPERATURA

Málaga, 28 de Noviembre de 2013

Fdo.: Salvatore Busonera Ffo.: Sergio García Rodríguez ___________________________

1


INDICE Orden

Concepto

1. MEMORIA 1.1. Memoria Descriptiva 1.1.1. Objeto 1.1.2. Antecedentes 1.1.3. Justificación 1.1.4. Datos de partida 1.1.5. Análisis y Descripción del circuito

Páginas

4 4 4 4 5

2. ANEXO 2.1. Información técnica 2.2. Protocolo de test 2.3. Documentación para el Servicio de Asistencia Técnica 2.4. Documentación para el cliente

7 7 7

3. PLANOS Y ESQUEMAS 3.1. Esquemas electrónicos 3.1.1. Esquema de bloques 3.1.2. Esquema control de temperatura 3.2. Circuitos impresos. Capas 3.2.1. Componentes - TOP 3.2.2. Pistas - BOT 3.2.3. Serigrafìa - SST 3.2.4 Plano de montaje - AST 3.2.5. Plano de taladros -DRD 3.3. Informes 3.3.1. Lista de componentes 3.3.2. Cinta de Taladrado

9 9 9 10 10 10 11 11 12 12 12 13

4. PLIEGO DE CONDICIONES 4.1. Normativa de obligado cumplimiento 4.2. Proceso de fabricación 4.3. Cláusulas sobre garantías, plazo de ejecución etc … 4.3.1. Planificación y Programación 4.4. Cláusulas de índole económica 4.5. Cláusulas de índole legal 5. PRESUPUESTO 5.1. Presupuestos parciales 5.1.1. Presupuesto de componentes y material vario 5.1.2. Presupuesto de Mano de obra 5.1.3. Presupuesto de Medios auxiliares e instrumentación 5.2. Presupuesto general

17 17 18 19 19

22 22 22 22 23

2


1. MEMORIA

3


1.1.

Memoria Descriptiva

1.1.1.

Objeto

La temperatura es una magnitud que se debe controlar con bastante frecuencia en los circuitos electrónicos, sobre todo cuando trabajamos con elementos de potencia que disipan calor, las temperaturas extremas pueden llegar ser muy destructivas. Con un control eficaz de temperatura, bien por una desconexión del circuito o por ventilación forzada, podemos evitar daños en el circuito, impidiendo que al final pueda terminar deteriorándose. También una de las ventajas del uso de un control de temperatura en un circuito de potencia con un apoyo de ventilación forzada, es que con esto se reduce considerablemente el tamaño de los elementos disipadores, con el consiguiente ahorro en el peso, tamaño y también repercutiendo en coste final del circuito. En circuitos con baterías también repercute en la duración de las mismas porque la ventilación solo se activa cuando es realmente necesaria ahorrando energía acumulada en las mismas. 1.1.2.

Antecedentes

En el proyecto anterior, nos dimos cuenta de que la temperatura es realmente importante a la hora de planificar un proyecto. Varios componentes se rompieron al pasar de determinada temperatura debido a una fuente de alimentación en mal estado, por ello hemos decido hacer un controlador de temperatura con su propia fuente de alimentación. 1.1.3.

Justificación

El circuito empieza por la alimentación de 12V CC y con el diodo D1, el D1 es una protección contra descuidos por inversión de polaridad. A continuación un regulador ajustable un LM317, que entrega como máximo unos 100mA, este circuito se ha fijado a una tensión de 8,2V por medio de un divisor de tensión compuesto por R1 y R2.esta tensión es la que alimenta el IC2 LM311 y le sirve como referencia fija de tensión por medio de las resistencias R4,R5. El sensor de temperatura es el transistor Q1 muy común un BD137. 1.1.4.

Datos de partida

Los esquemas los hemos tomado de la siguiente dirección: http://soloelectronica.net/control%20temperatura.htm

4


1.1.5

Análisis y Descripción del circuito

El circuito empieza por la alimentación de 12V CC y con el diodo D1, el D1 es una protección contra descuidos por inversión de polaridad. A continuación un regulador ajustable un LM317, que entrega como máximo unos 100mA, este circuito se ha fijado a una tensión de 8,2V por medio de un divisor de tensión compuesto por R1 y R2.esta tensión es la que alimenta el IC2 LM311 y le sirve como referencia fija de tensión por medio de las resistencias R4,R5. El sensor de temperatura es el transistor Q1 muy común un BD137

5


2. ANEXO

6


2.1 Manual técnico En caso de error causado por un mal funcionamiento del circuito esta son las tensiones que tendrá que otorgar el circuito: PUNTOS DE TEST TP1 TP2 TP3

TENSION MEDIDA MASA 10,88 10,88

2.3 Manual de usuario Este circuito impreso tiene que incorporarse con el circuito que se quiere proteger de la temperatura. El circuito tiene que alimentarse a través del conector correspondiente a 12 voltios. Dispone de un conector donde se conectará el ventilador el cual se accionará solo, cuando el sensor detecte un exceso de la temperatura. (Si el ventilador se acciona nada mas conectar el circuito, no se preocupe se apagará en seguida o tiene que regular el potenciómetro que regula la sensibilidad del sensor). Para regular la temperatura de accionamiento del ventilador tiene que girar la aguja del potenciómetro con un destornillador plano.

7


Order this document by BD676/D

SEMICONDUCTOR TECHNICAL DATA

! . . . for use as output devices in complementary general–purpose amplifier applications. • High DC Current Gain — hFE = 750 (Min) @ IC = 1.5 and 2.0 Adc • Monolithic Construction • BD676, 676A, 678, 678A, 680, 680A, 682 are complementary with BD675, 675A, 677, 677A, 679, 679A, 681 • BD 678, 678A, 680, 680A are equivalent to MJE 700, 701, 702, 703

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATING

Symbol

BD676 BD676A

BD678 BD678A

BD680 BD680A

BD682

Unit

VCEO

45

60

80

100

Vdc

Collector–Base Voltage

VCB

45

60

80

100

Vdc

Emitter–Base Voltage

VEB

5.0

Vdc

Collector Current

IC

4.0

Adc

Base Current

IB

0.1

Adc

Total Device Dissipation @ TC = 25 _C Derate above 25 _C

PD

40 0.32

Watts W/_C

– 55 to + 150

_C

Rating

Collector–Emitter Voltage

Operating and Storage Junction Temperating Range

TJ, Tstg

THERMAL CHARACTERISTICS Characteristic

Symbol

Max

Unit

θJC

3.13

_C/W

Thermal Resistance, Junction to Case

4.0 AMPERE DARLINGTON POWER TRANSISTORS PNP SILICON 45, 60, 80, 100 VOLTS 40 WATTS

CASE 77–08 TO–225AA TYPE

50 PD, POWER DISSIPATION (WATTS)

45 40 35 30 25 20 15 10 5.0 0

15

30

45

60

75

90

105

120

135

150

165

TC, CASE TEMPERATURE (°C)

Figure 1. Power Temperature Derating

REV 7

 Motorola, Inc. 1995 Motorola Bipolar Power Transistor Device Data

1


ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v v ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic

Symbol

Min

Max

Unit

BVCEO

45 60 80 100

— — — —

Vdc

Collector Cutoff Current (VCE = Half Rated VCEO, IB = 0)

ICEO

500

µAdc

Collector Cutoff Current (VCB = Rated BVCEO, IE = 0) (VCB = Rated BVCEO. IE = 0, TC = 100°C)

ICBO

— —

0.2 2.0

Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)

IEBO

2.0

750 750

— —

— —

2.5 2.8

— —

2.5 2.5

1.0

OFF CHARACTERISTICS

Collector–Emitter Breakdown Voltage(1) (IC = 50 mAdc, IB = 0)

BD676, 676A BD678, 678A BD680, 680A BD682

ON CHARACTERISTICS DC Current Gain(1) (IC = 1.5 Adc, VCE = 3.0 Vdc) (IC = 2.0 Adc, VCE = 3.0 Vdc)

mAdc

mAdc

hFE

BD676, 678, 680, 682 BD676A, 678A, 680A

Collector–Emitter Saturation Voltage(1) (IC = 1.5 Adc, IB = 30 mAdc) (IC = 2.0 Adc, IB = 40 mAdc) Base–Emitter On Voltage(1) (IC = 1.5 Adc, VCE = 3.0 Vdc) (IC = 2.0 Adc, VCE = 3.0 Vdc)

BD678, 680, 682 BD676A, 678A, 680A

VCE(sat) VBE(on)

BD678, 680, 682 BD676A, 678A, 680A

Vdc Vdc

DYNAMIC CHARACTERISTICS

Small–Signal Current Gain (IC = 1.5 Adc, VCE = 3.0 Vdc, f = 1.0 MHz)

(1) Pulse Test: Pulse Width

300 µs, Duty Cycle

hfe

2.0%.

IC, COLLECTOR CURRENT (AMP)

5.0

2.0

There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

1.0 0.5

BONDING WIRE LIMIT THERMAL LIMIT at TC = 25°C SECONDARY BREAKDOWN LIMIT

0.2 0.1

0.05 1.0

TC = 25°C

BD676, 676A BD678, 678A BD680, 680A BD682

2.0 5.0 10 50 20 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)

100

Figure 2. DC Safe Operating Area PNP BD676, 676A BD678, 678A BD680, 680A BD682

COLLECTOR

BASE

[ 8.0 k [ 120 EMITTER

Figure 3. Darlington Circuit Schematic 2

Motorola Bipolar Power Transistor Device Data


PACKAGE DIMENSIONS

–B– U

F

Q –A–

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

C M

DIM A B C D F G H J K M Q R S U V

1 2 3

H

K

J

V G S

R 0.25 (0.010)

A

M

M

B

M

D 2 PL 0.25 (0.010)

M

A

M

B

M

INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.130 0.094 BSC 0.050 0.095 0.015 0.025 0.575 0.655 5 _ TYP 0.148 0.158 0.045 0.055 0.025 0.035 0.145 0.155 0.040 –––

MILLIMETERS MIN MAX 10.80 11.04 7.50 7.74 2.42 2.66 0.51 0.66 2.93 3.30 2.39 BSC 1.27 2.41 0.39 0.63 14.61 16.63 5 _ TYP 3.76 4.01 1.15 1.39 0.64 0.88 3.69 3.93 1.02 –––

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. BASE

CASE 77–08 TO–225AA TYPE ISSUE V

Motorola Bipolar Power Transistor Device Data

3


Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

4

Motorola Bipolar Power Transistor Device Data

*BD676/D*

BD676/D


This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.


BD135/137/139

BD135/137/139 Medium Power Linear and Switching Applications • Complement to BD136, BD138 and BD140 respectively

TO-126

1

1. Emitter

2.Collector

3.Base

NPN Epitaxial Silicon Transistor Absolute Maximum Ratings TC=25°C unless otherwise noted Symbol VCBO

Collector-Base Voltage

Parameter : BD135 : BD137 : BD139

Value 45 60 80

Units V V V

VCEO

Collector-Emitter Voltage

: BD135 : BD137 : BD139

45 60 80

V V V

VEBO

Emitter-Base Voltage

5

V

IC

Collector Current (DC)

1.5

A

ICP

Collector Current (Pulse)

3.0

A

IB

Base Current

0.5

A

PC

Collector Dissipation (TC=25°C)

12.5

W

PC

Collector Dissipation (Ta=25°C)

1.25

W

TJ

Junction Temperature

150

°C

TSTG

Storage Temperature

- 55 ~ 150

°C

Electrical Characteristics TC=25°C unless otherwise noted Symbol VCEO(sus)

Parameter Collector-Emitter Sustaining Voltage : BD135 : BD137 : BD139

Test Condition IC = 30mA, IB = 0

Min.

Typ.

Max.

45 60 80

Units V V V

ICBO

Collector Cut-off Current

VCB = 30V, IE = 0

0.1

µA

IEBO

Emitter Cut-off Current

VEB = 5V, IC = 0

10

µA

hFE1 hFE2 hFE3

DC Current Gain

VCE = 2V, IC = 5mA VCE = 2V, IC = 0.5A VCE = 2V, IC = 150mA

: ALL DEVICE : ALL DEVICE : BD135 : BD137, BD139

VCE(sat)

Collector-Emitter Saturation Voltage

IC = 500mA, IB = 50mA

VBE(on)

Base-Emitter ON Voltage

VCE = 2V, IC = 0.5A

25 25 40 40

250 160 0.5

V

1

V

hFE Classification Classification

6

10

16

hFE3

40 ~ 100

63 ~ 160

100 ~ 250

©2000 Fairchild Semiconductor International

Rev. A, February 2000


BD135/137/139

Typical Characteristics

100

60 50 40 30 20 10 0 10

100

400

IB

350

IC = 10

70

450

IC = 20 IB

hFE, DC CURRENT GAIN

80

500

VCE(sat)[mV], SATURATION VOLTAGE

VCE = 2V 90

300 250 200 150 100 50 0 1E-3

1000

0.1

1

10

IC[A], COLLECTOR CURRENT

IC[mA], COLLECTOR CURRENT

Figure 1. DC current Gain

Figure 2. Collector-Emitter Saturation Voltage

10

1.1 1.0

IC MAX. (Pulsed)

) (on V V BE =5 V CE

0.7 0.6 0.5 0.4 0.3

1

100us

0.1

BD139 BD137 BD135

IC[A], COLLECTOR CURRENT

0.8

10us

IC MAX. (Continuous) s 1m

t) (sa V BE 0 I B 1 IC =

0.9

DC

VBE[V], BASE-EMITTER VOLTAGE

0.01

0.2 0.01

0.1 1E-3

0.01

0.1

1

10

1

10

100

VCE [V], COLLECTOR-EMITTER VOLTAGE

IC[A], COLLECTOR CURRENT

Figure 3. Base-Emitter Voltage

Figure 4. Safe Operating Area

20.0

PC[W], POWER DISSIPATION

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0 0

25

50

75

100

125

150

175

o

TC[ C], CASE TEMPERATURE

Figure 5. Power Derating

©2000 Fairchild Semiconductor International

Rev. A, February 2000


BD135/137/139

Package Demensions

8.00 ±0.30

11.00

ø3.20 ±0.10

±0.20

3.25 ±0.20

14.20MAX

3.90

±0.10

TO-126

(1.00)

(0.50)

0.75 ±0.10

#1 2.28TYP [2.28±0.20]

2.28TYP [2.28±0.20]

16.10

±0.30

13.06

0.75 ±0.10

±0.20

1.75 ±0.20

1.60 ±0.10

+0.10

0.50 –0.05

Dimensions in Millimeters ©2000 Fairchild Semiconductor International

Rev. A, February 2000


TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ E2CMOS™ FACT™ FACT Quiet Series™ FAST® FASTr™ GTO™

HiSeC™ ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6

SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification

Product Status

Definition

Advance Information

Formative or In Design

This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.

Preliminary

First Production

This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

No Identification Needed

Full Production

This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International

Rev. E


This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.


LM111/LM211/LM311 Voltage Comparator 1.0 General Description The LM111, LM211 and LM311 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard ± 15V op amp supplies down to the single 5V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50 mA. Both the inputs and the outputs of the LM111, LM211 or the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR’ed. Although slower than the LM106 and LM710 (200 ns response time vs 40 ns)

3.0 Typical Applications

the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710. The LM211 is identical to the LM111, except that its performance is specified over a −25˚C to +85˚C temperature range instead of −55˚C to +125˚C. The LM311 has a temperature range of 0˚C to +70˚C.

2.0 Features n n n n n

Operates from single 5V supply Input current: 150 nA max. over temperature Offset current: 20 nA max. over temperature Differential input voltage range: ± 30V Power consumption: 135 mW at ± 15V

(Note 3)

Offset Balancing

Strobing

00570436

00570437

Note: Do Not Ground Strobe Pin. Output is turned off when current is pulled from Strobe Pin.

Increasing Input Stage Current (Note 1)

Detector for Magnetic Transducer

00570438

Note 1: Increases typical common mode slew from 7.0V/µs to 18V/µs.

00570439

© 2004 National Semiconductor Corporation

DS005704

www.national.com

LM111/LM211/LM311 Voltage Comparator

January 2001


LM111/LM211/LM311

3.0 Typical Applications

(Note 3)

(Continued)

Digital Transmission Isolator

Relay Driver with Strobe

00570440

00570441

*Absorbs inductive kickback of relay and protects IC from severe voltage transients on V++ line. Note: Do Not Ground Strobe Pin.

Strobing off Both Input and Output Stages (Note 2)

00570442

Note: Do Not Ground Strobe Pin. Note 2: Typical input current is 50 pA with inputs strobed off. Note 3: Pin connections shown on schematic diagram and typical applications are for H08 metal can package.

Positive Peak Detector

Zero Crossing Detector Driving MOS Logic

00570424 00570423

*Solid tantalum

www.national.com

2


If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

LM111

−55˚C to 125˚C

LM211

−25˚C to 85˚C

Lead Temperature (Soldering, 10 sec)

260˚C

Voltage at Strobe Pin

V+−5V

Soldering Information

Total Supply Voltage (V84)

36V

Dual-In-Line Package

Output to Negative Supply Voltage (V74)

50V

Small Outline Package

Ground to Negative Supply Voltage (V14)

30V

Soldering (10 seconds)

± 30V ± 15V

Differential Input Voltage Input Voltage (Note 4) Output Short Circuit Duration

260˚C

Vapor Phase (60 seconds)

215˚C

Infrared (15 seconds)

220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

10 sec

Operating Temperature Range

ESD Rating (Note 11)

Electrical Characteristics

(Note 6)

Parameter

300V

for the LM111 and LM211

Conditions

Min

Typ

Max

Units

Input Offset Voltage (Note 7)

TA=25˚C, RS≤50k

0.7

3.0

mV

Input Offset Current

TA=25˚C

4.0

10

nA

Input Bias Current

TA=25˚C

60

100

nA

Voltage Gain

TA=25˚C

Response Time (Note 8)

TA=25˚C

200

Saturation Voltage

VIN≤−5 mV, IOUT=50 mA

0.75

1.5

V

40

200

V/mV ns

TA=25˚C Strobe ON Current (Note 9)

TA=25˚C

2.0

5.0

mA

Output Leakage Current

VIN≥5 mV, VOUT=35V

0.2

10

nA

TA=25˚C, ISTROBE=3 mA Input Offset Voltage (Note 7)

RS≤50 k

4.0

mV

Input Offset Current (Note 7)

20

nA

Input Bias Current

150

nA

13.8,-14.7

13.0

V

0.23

0.4

V

Input Voltage Range

V+=15V, V−=−15V, Pin 7

Saturation Voltage

V+≥4.5V, V−=0

−14.5

Pull-Up May Go To 5V VIN≤−6 mV, IOUT≤8 mA Output Leakage Current

VIN≥5 mV, VOUT=35V

0.1

0.5

µA

Positive Supply Current

TA=25˚C

5.1

6.0

mA

Negative Supply Current

TA=25˚C

4.1

5.0

mA

Note 4: This rating applies for ± 15 supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less. Note 5: The maximum junction temperature of the LM111 is 150˚C, while that of the LM211 is 110˚C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 165˚C/W, junction to ambient, or 20˚C/W, junction to case. The thermal resistance of the dual-in-line package is 110˚C/W, junction to ambient. Note 6: These specifications apply for VS= ± 15V and Ground pin at ground, and −55˚C≤TA≤+125˚C, unless otherwise stated. With the LM211, however, all temperature specifications are limited to −25˚C≤TA≤+85˚C. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies. Note 7: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and RS. Note 8: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive. Note 9: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA. Note 10: Refer to RETS111X for the LM111H, LM111J and LM111J-8 military specifications. Note 11: Human body model, 1.5 kΩ in series with 100 pF.

3

www.national.com

LM111/LM211/LM311

4.0 Absolute Maximum Ratings for the LM111/LM211(Note 10)


LM111/LM211/LM311

5.0 Absolute Maximum Ratings for the LM311(Note 12)

Output Short Circuit Duration

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range

Total Supply Voltage (V84)

36V

Soldering Information

Output to Negative Supply Voltage (V74)

40V

Ground to Negative Supply Voltage (V14)

30V

10 sec

Operating Temperature Range

0˚ to 70˚C −65˚C to 150˚C

Lead Temperature (soldering, 10 sec)

260˚C

Voltage at Strobe Pin

V+−5V

Dual-In-Line Package Soldering (10 seconds)

260˚C

Small Outline Package

± 30V ± 15V

Differential Input Voltage Input Voltage (Note 13) Power Dissipation (Note 14)

300V

Electrical Characteristics

(Note 15)

Parameter

215˚C

Infrared (15 seconds)

220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

500 mW

ESD Rating (Note 19)

Vapor Phase (60 seconds)

for the LM311 Typ

Max

Units

Input Offset Voltage (Note 16)

TA=25˚C, RS≤50k

Conditions

Min

2.0

7.5

mV

Input Offset Current(Note 16)

TA=25˚C

6.0

50

nA

Input Bias Current

TA=25˚C

100

250

Voltage Gain

TA=25˚C

Response Time (Note 17) Saturation Voltage

40

nA

200

V/mV

TA=25˚C

200

ns

VIN≤−10 mV, IOUT=50 mA

0.75

1.5

V

2.0

5.0

mA

0.2

50

nA

10

mV

Input Offset Current (Note 16)

70

nA

Input Bias Current

300

nA

13.8,−14.7

13.0

V

0.23

0.4

V

TA=25˚C Strobe ON Current (Note 18)

TA=25˚C

Output Leakage Current

VIN≥10 mV, VOUT=35V TA=25˚C, ISTROBE=3 mA V− = Pin 1 = −5V

Input Offset Voltage (Note 16)

RS≤50K

Input Voltage Range

−14.5

Saturation Voltage

V+≥4.5V, V−=0

Positive Supply Current

TA=25˚C

5.1

7.5

mA

Negative Supply Current

TA=25˚C

4.1

5.0

mA

VIN≤−10 mV, IOUT≤8 mA

Note 12: “Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.” Note 13: This rating applies for ± 15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less. Note 14: The maximum junction temperature of the LM311 is 110˚C. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of 165˚C/W, junction to ambient, or 20˚C/W, junction to case. The thermal resistance of the dual-in-line package is 100˚C/W, junction to ambient. Note 15: These specifications apply for VS= ± 15V and Pin 1 at ground, and 0˚C < TA < +70˚C, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies. Note 16: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and RS. Note 17: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive. Note 18: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA. Note 19: Human body model, 1.5 kΩ in series with 100 pF.

www.national.com

4


LM111/LM211/LM311

6.0 LM111/LM211 Typical Performance Characteristics Input Bias Current

Input Bias Current

00570443

00570444

Input Bias Current

Input Bias Current

00570446 00570445

Input Bias Current

Input Bias Current

00570447

00570448

5

www.national.com


LM111/LM211/LM311

6.0 LM111/LM211 Typical Performance Characteristics Input Bias Current Input Overdrives

(Continued)

Input Bias Current Input Overdrives

00570450

00570449

Response Time for Various Input Overdrives

Input Bias Current

00570451 00570452

Response Time for Various Input Overdrives

Output Limiting Characteristics

00570454 00570453

www.national.com

6


Supply Current

LM111/LM211/LM311

6.0 LM111/LM211 Typical Performance Characteristics

(Continued)

Supply Current

00570455

00570456

Leakage Currents

00570457

7.0 LM311 Typical Performance Characteristics Input Bias Current

Input Offset Current

00570458

00570459

7

www.national.com


LM111/LM211/LM311

7.0 LM311 Typical Performance Characteristics Offset Error

(Continued) Input Characteristics

00570461

00570460

Common Mode Limits

Transfer Function

00570462

00570463

Response Time for Various Input Overdrives

Response Time for Various Input Overdrives

00570465

00570464

www.national.com

8


LM111/LM211/LM311

7.0 LM311 Typical Performance Characteristics

(Continued) Response Time for Various Input Overdrives

Output Saturation Voltage

00570466 00570467

Response Time for Various Input Overdrives

Output Limiting Characteristics

00570469 00570468

Supply Current

Supply Current

00570470

00570471

9

www.national.com


LM111/LM211/LM311

7.0 LM311 Typical Performance Characteristics

(Continued)

Leakage Currents

00570472

lead between the resistors and the input pins can result in oscillations that are very hard to damp. Twisting these input leads tightly is the only (second best) alternative to placing resistors close to the comparator. 5. Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM111 circuitry, for example, one side of a double-layer circuit card. Ground foil (or, positive supply or negative supply foil) should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capacitive coupling from any high-level signals (such as the output). If pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located, at most, a few inches away from the LM111, and the 0.01 µF capacitor should be installed. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM111. (Some other comparators require the power-supply bypass to be located immediately adjacent to the comparator.) 6. It is a standard procedure to use hysteresis (positive feedback) around a comparator, to prevent oscillation, and to avoid excessive noise on the output because the comparator is a good amplifier for its own noise. In the circuit of Figure 2, the feedback from the output to the positive input will cause about 3 mV of hysteresis. However, if RS is larger than 100Ω, such as 50 kΩ, it would not be reasonable to simply increase the value of the positive feedback resistor above 510 kΩ. The circuit of Figure 3 could be used, but it is rather awkward. See the notes in paragraph 7 below.

8.0 Application Hints 8.1 CIRCUIT TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS When a high-speed comparator such as the LM111 is used with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that the power supplies have been bypassed (with 0.1 µF disc capacitors), and that the output signal is routed well away from the inputs (pins 2 and 3) and also away from pins 5 and 6. However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high (1 kΩ to 100 kΩ), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM111. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 1 below. 1. The trim pins (pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a 0.01 µF capacitor C1 between pins 5 and 6 will minimize the susceptibility to AC coupling. A smaller capacitor is used if pin 5 is used for positive feedback as in Figure 1. 2. Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor C2 is connected directly across the input pins. 3. When the signal source is applied through a resistive network, RS, it is usually advantageous to choose an RS' of substantially the same value, both for DC and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wirewound resistors are not suitable. 4. When comparator circuits use input resistors (eg. summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words there should be very little lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if RS=10 kΩ, as little as 5 inches of www.national.com

10


7.

tive supply. This signal is centered around the nominal voltage at pin 5, so this feedback does not add to the VOS of the comparator. As much as 8 mV of VOS can be trimmed out, using the 5 kΩ pot and 3 kΩ resistor as shown.

(Continued)

When both inputs of the LM111 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM111 so that positive feedback would be disruptive, the circuit of Figure 1 is ideal. The positive feedback is to pin 5 (one of the offset adjustment pins). It is sufficient to cause 1 to 2 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz. The positive-feedback signal across the 82Ω resistor swings 240 mV below the posi-

8.

These application notes apply specifically to the LM111, LM211, LM311, and LF111 families of comparators, and are applicable to all high-speed comparators in general, (with the exception that not all comparators have trim pins).

00570429

Pin connections shown are for LM111H in the H08 hermetic package

FIGURE 1. Improved Positive Feedback

00570430

Pin connections shown are for LM111H in the H08 hermetic package

FIGURE 2. Conventional Positive Feedback

11

www.national.com

LM111/LM211/LM311

8.0 Application Hints


LM111/LM211/LM311

8.0 Application Hints

(Continued)

00570431

FIGURE 3. Positive Feedback with High Source Resistance

9.0 Typical Applications

(Pin numbers

refer to H08 package) Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

00570413

00570414

*TTL or DTL fanout of two

www.national.com

12


LM111/LM211/LM311

9.0 Typical Applications (Pin numbers refer to H08 package)

(Continued)

10 Hz to 10 kHz Voltage Controlled Oscillator

00570415

*Adjust for symmetrical square wave time when VIN = 5 mV †Minimum capacitance 20 pF Maximum frequency 50 kHz

Driving Ground-Referred Load

Using Clamp Diodes to Improve Response

00570417

00570416

*Input polarity is reversed when using pin 1 as output.

TTL Interface with High Level Logic

00570418

*Values shown are for a 0 to 30V logic swing and a 15V threshold. †May be added to control speed and reduce susceptibility to noise spikes.

13

www.national.com


LM111/LM211/LM311

9.0 Typical Applications (Pin numbers refer to H08 package) Crystal Oscillator

(Continued) Comparator and Solenoid Driver

00570420

00570419

Precision Squarer

00570421

*Solid tantalum †Adjust to set clamp level

www.national.com

14


LM111/LM211/LM311

9.0 Typical Applications (Pin numbers refer to H08 package)

(Continued)

Low Voltage Adjustable Reference Supply

00570422

*Solid tantalum

Positive Peak Detector

Zero Crossing Detector Driving MOS Logic

00570424 00570423

*Solid tantalum

Negative Peak Detector

00570425

*Solid tantalum

15

www.national.com


LM111/LM211/LM311

9.0 Typical Applications (Pin numbers refer to H08 package)

(Continued)

Precision Photodiode Comparator

00570426

*R2 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing leakages by an order of magnitude.

Switching Power Amplifier

00570427

www.national.com

16


LM111/LM211/LM311

9.0 Typical Applications (Pin numbers refer to H08 package)

(Continued)

Switching Power Amplifier

00570428

17

www.national.com


LM111/LM211/LM311

10.0 Schematic Diagram

(Note 20)

00570405

Note 20: Pin connections shown on schematic diagram are for H08 package.

www.national.com

18


LM111/LM211/LM311

11.0 Connection Diagrams Metal Can Package

00570406

Note: Pin 4 connected to case

Top View Order Number LM111H, LM111H/883(Note 21) , LM211H or LM311H See NS Package Number H08C Dual-In-Line Package

Dual-In-Line Package

00570434

Top View Order Number LM111J-8, LM111J-8/883(Note 21), LM311M, LM311MX or LM311N See NS Package Number J08A, M08A or N08E

00570435

Top View Order Number LM111J/883(Note 21) See NS Package Number J14A or N14A

00570433

Order Number LM111W/883(Note 21), LM111WG/883 See NS Package Number W10A, WG10A

Note 21: Also available per JM38510/10304

19

www.national.com


LM111/LM211/LM311

12.0 Physical Dimensions

inches (millimeters) unless otherwise noted

Metal Can Package (H) Order Number LM111H, LM111H/883, LM211H or LM311H NS Package Number H08C

Cavity Dual-In-Line Package (J) Order Number LM111J-8, LM111J-8/883 NS Package Number J08A

www.national.com

20


LM111/LM211/LM311

12.0 Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (J) Order Number LM111J/883 NS Package Number J14A

Dual-In-Line Package (M) Order Number LM311M, LM311MX NS Package Number M08A

21

www.national.com


LM111/LM211/LM311

12.0 Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (N) Order Number LM311N NS Package Number N08E

Order Number LM111W/883, LM111WG/883 NS Package Number W10A, WG10A

www.national.com

22


LM111/LM211/LM311 Voltage Comparator

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2. National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560


3. PLANOS Y ESQUEMAS

8


3.1.

Esquemas electr贸nicos

3.1.1.

Esquema de bloques

3.1.2.

Esquema Sensor

9


3.2.

Capas

3.2.1 Componentes – TOP

3.2.2 Pistas – BOT

10


3.2.3 Serigrafía – SST

3.2.4 Plano de montaje - AST

11


3.2.5 Plano de taladros -DRD

3.3.

Lista de componentes Cantidad 2 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

Producto Condensadores 100uF 25V Condensadores 10uF 50V Condensadores 4,7uF 50V Condensadores 47uF 25V Condensadores 100nF 65V Condensadores 1000uF 25V Resistencias 1k 1/4W Resistencias 5k6 1/4w Resistencias 100K 1/4w Resistencias 15K 1/4w Resistencias 4K7 1/4w Resistencias 10 1/4w Resistencias 2k7 1/4w Resistencias 82 1/4w Resistencias 47K 1/4w Potenci贸metro 100K Diodo 1N4002 Diodo 1N4148 Transistor BD137 Transistor BD678 Circuito Integrado LM311 Regulador LM317L

12


3.3.1.

Cinta de Taladrado

M48 ;DRILL file {Pcbnew (2012-apr-16-27)-stable} date jue 06 feb 2014 09:01:15 CET ;FORMAT={-:-/ absolute / inch / decimal} FMAT,2 INCH,TZ T1C0.032 T2C0.032 T3C0.047 T4C0.060 % G90 G05 M72 T1 X0274Y1641 X0449Y1151 X0449Y0851 X0673Y1641 X0707Y0836 X0734Y1243 X0855Y1239 X0980Y1245 X1107Y0836 X1250Y2100 X1300Y0350 X1401Y2186 X1401Y2086 X1401Y1986 X1702Y2247 X1706Y2004 X1760Y1595 X1760Y1295 X1800Y0950

13


X1883Y2103 X1900Y1300 X1900Y0350 X1915Y1875 X2015Y1875 X2052Y2101 X2141Y0537 X2309Y0753 X2368Y1868 X2368Y1768 X2377Y2110 X2399Y0953 X2441Y1274 X2441Y0537 X2585Y1180 X2585Y1080 X2590Y1670 X2590Y1370 X2609Y0753 X2777Y2110 X2787Y1504 X2787Y1204 X2960Y1210 X3012Y0790 X3029Y1661 X3090Y1760 X3090Y1560 X3328Y2166 X3360Y1210 X3412Y0790 X3428Y2166 X3508Y1880 X3508Y1480 X3528Y2166 X3630Y0990

14


X3631Y1108 X3631Y0875 T2 X0865Y1549 X0965Y1549 X1089Y2389 X1089Y2089 X1115Y1536 X1115Y1237 X2040Y1480 X2040Y1380 X2040Y1280 X2040Y1180 X2340Y1480 X2340Y1380 X2340Y1280 X2340Y1180 T3 X0679Y0385 X0879Y0385 X1093Y0320 X2553Y0539 T4 X1500Y0350 X2100Y0350 T0 M30

15


4. PLIEGO DE CONDICIONES

16


4.1.

Normativa de obligado cumplimiento

- UNE 20-050-74 (I). Código para las marcas de resistencias y condensadores. Valores y tolerancias. - UNE 20-524-75 (I). Técnica circuitos impresos. Parámetros fundamentales. Sistemas de cuadrícula. - UNE 20-524. Equipos electrónicos y sus componentes. Soldabilidad de circuitos impresos. - UNE 20-524-77 (II). Técnica de circuitos impresos. Terminología - UNE 20-531-73. Series de valores nominales para resistencias y condensadores. - UNE 20-543-85 (I) .Condensadores fijos en equipos electrónicos. - UNE 20-545-89. Resistencias fijas para equipos electrónicos. OTRAS: - UNE 20916: 1995: Estructuras mecánicas para equipos electrónicos. Terminología. - UNE 21302-2: 1973: Vocabulario electrotécnico. Electrónica de potencia. - UNE 21302-551: 1996: Vocabulario electrotécnico internacional. Parte 705 propagación de las ondas de radio. - UNE 21352: 1976: explicación de las cualidades y funcionamiento de equipos de media electrónicos. - UNE-EN60933: sistemas de audio, video y audiovisuales. Interconexiones y valores de adaptación. - UNE-EN61000-4-3-1998: Compatibilidad electromagnética. - UNE-EN61030: 1997: Sistemas de audio, video y audio visuales. Bus digital doméstico. - EN50090-3-2-1995: Sistemas electrónicos para viviendas y edificios. - EN60852-4: 1996: Dimensiones externas de transformadores e inductancias destinadas a equipos electrónicos y de telecomunicaciones. - EN61021-1: 1997: Núcleos de chapas laminadas para transformadores e inductancias destinadas a ser utilizadas en equipos electrónicos y de telecomunicaciones. - EN123500: 1992: Especificación intermedia: placas de circuitos impresos flexibles con taladros para la inserción de componentes.

4.2

Proceso de fabricación 4.2.1 Proceso de fabricación

- Preparación de componentes: Primero se adquieren los componentes teniendo en cuenta sus especificaciones técnicas, a continuación se obtienen las placas de circuito impreso, basándonos en las pautas anteriores. Como último punto, montaje de componentes en placa de circuito impreso y soldadura.

17


- Obtención de circuito impreso: El material elegido es la baquelita, de 1.7mm de grosor obteniendo así mayor resistencia teriaca y a los cambios climáticos y mecánicos. - Soldadura y montaje de componentes en placa de circuito impreso: Se debe tener muy en cuenta la manipulación de los componentes, ya que este material es susceptible a la hora de su transporte e instalación en circuito impreso. Los dos circuitos integrados de nuestro proyecto deben ser instalados en zócalos, para su instalación, también debemos prever el lugar y la indumentaria del personal de montaje, ya que estos pueden acumular cargas electrostáticas. 4.3.Cláusulas sobre garantías, plazo de ejecución, etc. … Este tipo de cláusulas intentan proteger a las partes de posibles errores de manipulación del equipo diseñado, así como establecer un período de garantía de funcionamiento del equipo. Reconocimiento de los materiales. El cliente queda autorizado a utilizar para el desarrollo de este proyecto los materiales que cumplan las condiciones indicadas en el pliego de condiciones., sin necesidad de reconocimiento previo de la empresa proyectista, siempre y cuando se trate de materiales de procedencia reconocida y suministros normales. Indemnizaciones por daños y perjuicios. El cliente no tendrá derecho a indemnización por causas de pérdidas, averías o perjuicios ocasionados en el desarrollo del proyecto. Será de cuenta de la empresa contratista indemnizar a quien corresponda y cuando a ello hubiere lugar, de todos los daños y perjuicios que puedan causarse por las operaciones de desarrollo y ejecución del proyecto. El contratista será el responsable de todos los accidentes que sobrevinieran durante la instalación del equipo electrónico, de cualquier avería o accidente. Plazos de ejecución. Se indican en el contrato y empezarán a contar partir de la fecha en que se comunique a la empresa proyectista la adjudicación del proyecto. Los retrasos debidos a causas ajenas a la voluntad de ésta serán motivo de prórroga. El retraso en el pago de cualquier valoración superior a partir de la fecha de la misma, se considerará motivo de prórroga por igual plazo. Recepción provisional. Una vez terminado el equipo electrónico en los quince días siguientes a la petición de la empresa proyectista se hará la recepción provisional del equipo por la empresa contratista, requiriendo para ello la presencia de una persona autorizada para cada empresa y levantándose por duplicado el acta correspondiente que firmarán las partes. Si se detectasen fallos de funcionamiento, la empresa contratista lo comunicará por escrito a la empresa proyectista para su reparación fijando un plazo prudencial. Periodo de garantía. Como garantía de la bondad de la obra se descontará a la empresa contratista la última liquidación, el 3% del importe total de la obra. 4.3.1. Planificación y Programación

18



4.4.

Cláusulas de índole económica.

En estas cláusulas se suele determinar la forma de pago en las distintas fases del proyecto: Pagos valorados. Mensualmente se hará, entre la empresa proyectista y la contratista, una valoración del proyecto desarrollado, con arreglo a los precios establecidos y con los planos y referencias necesarias para su comprobación. La comprobación y aceptación deberán quedar determinadas en 15 días. Abonos de materiales. Cuando a juicio de la empresa contratista no exista peligro de hurto de los componentes adquiridos para el desarrollo del equipo electrónico, éstos se abonarán antes de la finalización del proyecto según establezcan las partes, no obstante la empresa contratista podrá exigir las garantías necesarias para evitar la salida o deterioro de los componentes abonados. Descuento por equipo defectuoso. La empresa contratista podrá proponer a la empresa proyectista la aceptación de estas taras con la rebaja económica que estime oportuna si se ha observado defectos de funcionamiento en el equipo electrónico diseñado con relación a lo exigido en el pliego de condiciones. Si no quedara satisfecho la empresa contratista con la rebaja quedará obligado al rediseño y construcción de toda la parte del equipo electrónico afectada por los efectos señalados. Revisión de costos. Se revisarán los costos siempre que resulten modificados las condiciones económicas de los costos de materiales en una diferencia superior al 5% al valor prefijado del precio estipulado en el presupuesto. Cuando la empresa contratista requiera la ampliación de alguna de las especificaciones o características del equipo electrónico se deberá realizar un estudio económico del sobreprecio a pagar por la empresa contratista. De no haber acuerdo, la empresa proyectista quedará relevada del compromiso de ejecución quedando obligada al empresa contratista al abono total de todos los costes de mano de obra, y similares desembolsados hasta el momento por la empresa proyectista. Abono de obras. Los pagos valorados se abonarán dentro del mes siguiente a la fecha de redacción. Cualquier retraso sobre estos plazos será indemnizado con el interés oficial para efectos comerciales fijado por el Banco de España. Liquidación definitiva. En el plazo máximo de un mes desde la recepción del equipo electrónico por parte de la empresa contratista ésta deberá realizar la liquidación definitiva. De existir fianza, éste se devolverá en el mes siguiente a la finalización del plazo de garantía estipulado de no haber reclamaciones de terceros por daños, etc. 4.5. Cláusulas de índole legal En estas cláusulas se delimitan las condiciones en las que ambas partes podrán rescindir el contrato de construcción del equipo electrónico objeto del proyecto. Modificaciones de obra. El diseño del equipo electrónico podrá ser cambiado total o parcialmente por la empresa contratista, no obstante si la empresa proyectista se considera perjudicada en sus intereses, solicitará la indemnización a que se considere acreedora, y cuya estimación someterán las partes a la decisión de la comisión arbitral. En los casos de suspensión no correrá el plazo. Derecho de rescisión. La empresa proyectista podrá rescindir el contrato en los siguientes casos:

19


1. Cuando las variaciones introducidas en el equipo electrónico aumenten o disminuyan el importe total de ésta de un 20%. 2. Cuando por razones ajenas a la empresa proyectista pase más de un años sin poder trabajar en el equipo electrónico. 3. Cuando se retrase más de seis meses el pago de alguno de los pagos valorados estipulados. Rescisión por incumplimiento del contrato. En el caso de retraso injustificado sobre los plazos fijados se impondrá a la empresa proyectista una multa de 1,5% del presupuesto asignado como pago valorado. Liquidación en caso de rescisión. Se hará una liquidación única que será la definitiva con arreglo a lo estipulado en este pliego. Cuestiones no previstas o reclamaciones. Todas las cuestiones que pudieran surgir sobre interpretación, perfeccionamiento y cumplimiento de las condiciones del contrato entre ambas partes serán resueltas por la comisión arbitral. La comisión arbitral deberá dictar resolución después de oídas las partes dentro de los quince días siguientes al planteamiento del asunto ante la misma. Durante este plazo, la empresa proyectista deberá acatar las órdenes de trabajo indicadas por la empresa contratista sin perjuicio de proclamar las indemnizaciones correspondientes si la resolución le fuese favorable. Entre las resoluciones dictadas por la comisión arbitral figurará en todo caso la proposición en que cada una de las partes deberá participar en el abono de los horarios de las personas que forman la comisión y de los peritos cuyo informe haya sido solicitado por ella.

20


5. PRESUPUESTO

21


5.1.

Presupuestos parciales

5.1.1.

Presupuesto de componentes y material vario

Cantidad 2 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 Total 5.1.2.

Producto Condensadores 100uF 25V Condensadores 10uF 50V Condensadores 4,7uF 50V Condensadores 47uF 25V Condensadores 100nF 65V Condensadores 1000uF 25V Resistencias 1k 1/4W Resistencias 5k6 1/4w Resistencias 100K 1/4w Resistencias 15K 1/4w Resistencias 4K7 1/4w Resistencias 10 1/4w Resistencias 2k7 1/4w Resistencias 82 1/4w Resistencias 47K 1/4w Potenciómetro 100K Diodo 1N4002 Diodo 1N4148 Transistor BD137 Transistor BD678 Circuito Integrado LM311 Regulador LM317L

Precio con IVA 0.32€ 0.14€ 0.55€ 0.29€ 0.28€ 0.26€ 0.12€ 0.05€ 0.12€ 0.08€ 0.07€ 0.04€ 0.12€ 0.09€ 0.12€ 0.24€ 0.11€ 0.07€ 0.68€ 0.48€ 0.38€ 0.77€ 5.45€

Presupuesto de Mano de obra Horas 15 10 20 Total

5.1.3.

Precio Unitario Precio sin IVA 0.14€ 0.28€ 0.12€ 0.12€ 0.23€ 0.46€ 0.24€ 0.24€ 0.23€ 0.23€ 0.22€ 0.22€ 0.05€ 0.10€ 0.04€ 0.04€ 0.10€ 0.10€ 0.07€ 0.07€ 0.06€ 0.06€ 0.03€ 0.03€ 0.05€ 0.10€ 0.08€ 0.08€ 0.10€ 0.10€ 0.20€ 0.20€ 0.09€ 0.09€ 0.06€ 0.06€ 0.57€ 0.57€ 0.40€ 0.40€ 0.31€ 0.31€ 0.64€ 0.64€ 4.03€ 4.50€

Concepto Diseño esquema Diseños PCB Montaje

Precio sin IVA 450€ 300€ 600 € 1350€

Precio con IVA 544.5€ 363€ 726€ 1633.5€

Presupuesto de Medios auxiliares e instrumentación

Cantidad 1 1 1 Total

Concepto Agua oxigenada 100 Vol. Agua Fuerte Baquelita

Precio sin IVA 1€ 0.25 € 2.5 € 3.75 €

Precio con IVA 1.21 € 0.28 € 3.04 € 4.53 €

22


5.2.

Presupuesto general

Concepto Componentes Mano de Obra Medios Auxiliares Total

Precio sin IVA 4.50€ 1350€ 3.75 € 1358.25€

Precio con IVA 5.45€ 1633.5€ 4.53 € 1643.48€

El presente presupuesto asciende a mil seiscientos cuarenta y tres euros con cuarenta y ocho céntimos.

Técnico Superior:

Técnico Superior:

Matteo Salvatore Busonera

Sergio García Rodríguez

23


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.