More than half the electrical power produced worldwide is used by loads that operate on the principles of magnetism, such as motors. Likewise, the majority of electrical power is produced by generators that operate based on the principles of magnetism. Without transformers that operate on the principles of magnetism, electrical power could not be transmitted over the distances required to get the power to all customers. Understanding the importance, laws, and uses of magnetism is fundamental to understanding generated, transmitted, and consumed electrical power.
OBJECTIVES • Explain the principles of magnetism and electromagnetism. • Describe the function and common applications of a solenoid. • Describe the function and operation of a transformer. • Describe how transformers are rated and explain power loss. • List and describe common types of transformers. • Describe transformer overloading and transformer cooling methods. • Explain how to size transformers, determine current draw, and compensate for ambient temperature. • List and describe common transformer connections. • Explain utility power factor and peak demand penalties. • Identify two ways to increase power capacity. • Describe smart grid technology.
Magnetism Magnetism is a force that interacts with other magnets and ferromagnetic materials. Ferromagnetic materials are materials, such as soft iron, that are easily magne‑ tized. Magnetism is used to produce most of the elec‑ tricity consumed, develop rotary motion in motors, and develop linear motion in solenoids. A magnet is a device that attracts iron and steel because of the molecular alignment of its material. All magnets or magnetized material have a north (N) and south (S) pole. The basic law of magnetism states that unlike magnetic poles (N and S) attract each other and like magnetic poles (N and N or S and S) repel each other. The force of at‑ traction between two magnets increases as the distance between the magnets decreases. Likewise, the force of attraction between two magnets decreases as the distance between the magnets increases. See Figure 15‑1.
Magnetic flux is the invisible lines of force that make up the magnetic field. The more dense the flux, the stronger the magnetic force. Flux is most dense at the ends of a magnet. For this reason, the magnetic force is strongest at the ends of a magnet. The lines of flux leave the north pole and enter the south pole of a magnet or magnetic field. Magnets may be permanent or temporary. Permanent magnets are magnets that hold their magnetism for a long period of time. Temporary magnets are magnets that lose their magnetism as soon as the magnetizing force is removed. The most common permanent magnets are bar magnets and horseshoe magnets. Permanent magnets are used in electrical applications, such as in perma‑ nent magnet DC motors and reed switches. Temporary magnets are used in most electrical applications, such as motors, transformers, and solenoids. 249
250 ELECTRICAL PRINCIPLES AND PRACTICES
Magnetism Principles
Electromagnetism Principles NO MAGNETIC FIELD NO CURRENT FLOW IN CONDUCTOR
MAGNETS
N
S
N
CONDUCTOR
COIL
S WEAK MAGNETIC FIELD
MAGNETIC FLUX (FORCE) LINES TRAVEL IN SAME DIRECTION
DIRECTION OF FORCE
LOW CURRENT FLOW IN CONDUCTOR
UNLIKE MAGNETIC POLES ATTRACT
STRONG MAGNETIC FIELD HIGH CURRENT FLOW IN CONDUCTOR
S
DIRECTION OF FORCE
N
N
S
MAGNETIC FLUX (FORCE) LINES TRAVEL IN OPPOSITE DIRECTIONS
WEAK MAGNETIC FIELD MAGNETIC FIELD INCREASES WHEN NUMBER OF COILS INCREASES
LIKE MAGNETIC POLES REPEL Figure 15-1. The basic law of magnetism states that unlike magnetic poles attract each other and like magnetic poles repel each other.
M
edia Clip
Electromagnetism A magnetic field is produced any time electricity passes through a conductor (wire). Electromagnetism is the magnetic field produced when electricity passes through a conductor. Electromagnetism is a temporary magnetic force because the magnetic field is present only as long as current flows. The magnetic field is reduced to zero when the current flow stops. The magnetic field around a straight conductor is not strong and is of little practical use. The strength of the magnetic field is increased by wrapping the conductor into a coil, increasing the amount of current flowing through the conductor, or wrapping the conductor around an iron core. A strong, concentrated magnetic field is developed when a conductor is wrapped into a coil. The strength of a magnetic field is directly proportional to the number of turns in the coil and the amount of current flowing through the conductor. An iron core increases the strength of the magnetic field by concentrating the field. See Figure 15‑2.
STRONG MAGNETIC FIELD AIR CORE
IRON CORE
WEAK MAGNETIC FIELD
STRONG MAGNETIC FIELD
Figure 15-2. Electromagnetism is the magnetic field produced when electricity passes through a conductor.
Direct current applied to a conductor starts at zero and goes to its maximum value almost instantly. The magnetic field around the conductor also starts at zero and goes to its maximum strength almost instantly. The current and strength of the magnetic field remain at their maximum value as long as the load resistance does not change. The current and the strength of the magnetic field increase if the resistance of the circuit decreases. The current and the magnetic field drop to zero when the direct current is removed.
Chapter 15 — Transformers and Smart Grid Technology 251
Alternating current applied to a conductor causes the current to continuously vary in magnitude and the magnetic field to continuously vary in strength. Current flow and magnetic field strength are at their maximum value at the positive and negative peak of the AC sine wave. The current is zero and no magnetic field is produced at the zero points of the AC sine wave. The direction of current flow and polarity of the magnetic field change every time the current passes the zero point of the AC sine wave. On standard 60 Hz (cycle) power frequencies, the current passes the zero point 120 times per second. See Figure 15‑3.
The coil windings are wound around an iron frame to increase the magnetic force produced by the coil. An iron core placed near the energized coil causes the magnetic force to draw the iron core into the coil. The magnetic field is not produced when power is removed from the coil. The iron core is removed from the coil by a spring. See Figure 15‑4. The amount of linear force a solenoid develops de‑ pends on the number of turns of wire in the coil and the amount of applied current. The more coil turns a solenoid has, the greater the linear force. However, as the number of coil turns is increased, the overall size of the solenoid increases. The higher the current flow through the coil, the greater the linear force. The amount of current drawn by the solenoid depends on the applied voltage. For any given size solenoid, the higher the applied voltage, the higher the current. However, if the applied voltage is increased beyond the voltage rating of the solenoid, the high current causes the solenoid to overheat and burn out.
Solenoids Electromagnetism is used in solenoids. A solenoid is an electric output device that converts electrical energy into a linear, mechanical force. Solenoids produce a linear, mechanical force when electricity is applied to the coil. The coil produces an electromagnetic force when current passes through the coil windings.
AC Circuit Magnetic Field MAXIMUM MAGNETIC FIELD MAXIMUM POSITIVE CURRENT FLOW N
S
MAGNETIC FIELD INCREASING
MAGNETIC FIELD DECREASING AC SINE WAVE
N
S
N
S
CURRENT FLOW INCREASING
NO CURRENT FLOW NO MAGNETIC FIELD
NO CURRENT FLOW
MAGNETIC FIELD INCREASING
WIRE COIL
NO MAGNETIC FIELD
CURRENT FLOW DECREASING
MAGNETIC FIELD DECREASING
S
S
N
CURRENT FLOW DECREASING
CURRENT FLOW INCREASING AC SUPPLY
N
LOAD OR ADDITIONAL COIL OF WIRE MAXIMUM NEGATIVE CURRENT FLOW
MAXIMUM MAGNETIC FIELD S
N
Figure 15-3. Alternating current applied to a conductor causes the current to continuously vary in magnitude and the magnetic field to continuously vary in strength.
252 ELECTRICAL PRINCIPLES AND PRACTICES
Solenoids MAGNETIC FIELD PRODUCED AROUND COIL WHEN CURRENT FLOWS THROUGH WINDINGS
L1
L2
COIL
WINDINGS
IRON CORE
L1
L2
MAGNETIC FORCE DRAWS IRON CORE INTO COIL SPRING
IRON CORE
L1
L2
IRON CORE IS REMOVED BY SPRING WHEN MAGNETIC FIELD IS REMOVED
Solenoids develop linear force in applications that use short strokes at low force. Solenoids are used in many elec‑ trical applications. Common solenoid applications include: • Residential — Control the flow of water or gas in washing machines, dishwashers, dryers, furnaces, and automatic sprinkling systems. • Automobiles — Control locks (doors, trunk, gas tank cover), gas and water flow, antipollution valves, and vacuum valves. • Boats and Airplanes — Control fuel, coolant, and water flow. Also used for electric control of doors, hatches, missiles, and other devices. • Commercial and Industrial — Control door locks, open and close valves dispensing product, control move‑ ment of parts, stamp information on products, clamp parts, and dispense coins. Also used to operate motor starters, contactors, clutches, and brakes, and control fluid power valves.
Transformers A transformer is an electric device that uses electro‑ magnetism to change voltage from one level to another or to isolate one voltage from another. Transformers are primarily used to step up or step down voltage. Transformers operate on the electromagnetic mutual induction principle. Mutual inductance is the effect of one coil inducing a voltage into another coil. See Figure 15‑5.
OPERATION
L1
SOLENOID
L2
LINE DIAGRAM DRUM MOUNTED ON MOTOR SHAFT SOLENOID USED TO OPEN BRAKE WHEN SOLENOID IS ENERGIZED SPRING USED TO CLOSE BRAKE WHEN SOLENOID IS DE-ENERGIZED BRAKE SHOES
APPLICATION Figure 15-4. Solenoids produce a linear, mechanical force when electricity is applied to the coil.
Tech Fact Although most power transformers are aboveground type and designed to be mounted on pads or poles, underground transformers are available and used in large facilities to eliminate overhead power lines.
The principle of electromagnetic mutual induction states that when the magnetic flux lines from one expand‑ ing and contracting magnetic field cut the windings of a second coil, a voltage is induced in the second coil. The amount of voltage induced in the second coil depends on the relative position of the two coils and the number of turns in each coil. The induced voltage in the second coil depends on the relative position of the two coils if the number of turns in each coil are equal. The highest mutual inductance occurs when all the magnetic flux lines from each coil cut through all the turns of wire in the opposite coil. Likewise, no mutual inductance occurs when no magnetic flux lines from one coil cut through any of the turns of wire in the other coil.
Chapter 15 — Transformers and Smart Grid Technology 253
Transformer Operation
Mutual Inductance
AC VOLTAGE IN
AC VOLTAGE OUT
L1
L1
L2
SUPPLY VOLTAGE CONNECTED TO PRIMARY LOAD(S) CONNECTED TO SECONDARY L1
L2
L2 LOAD
PRIMARY COIL LAMINATED STEEL CORE MAGNETIC FIELD
MORE TURNS OF WIRE ON SECONDARY COIL
L2
APPLIED VOLTAGE
LINES OF MAGNETIC FLUX (FORCE) FROM ONE COIL CUT THROUGH WINDINGS OF A SECOND COIL
L2
M
L1
edia Clip
L1
SECONDARY COIL
INDUCED VOLTAGE HIGHER THAN APPLIED VOLTAGE
STEP-UP TRANSFORMER L1
LESS TURNS OF WIRE ON SECONDARY COIL
L2
L1
HIGH MUTUAL INDUCTANCE (COILS CLOSE)
APPLIED VOLTAGE
L2
INDUCED VOLTAGE LOWER THAN APPLIED VOLTAGE
STEP-DOWN TRANSFORMER
NO MUTUAL INDUCTANCE LITTLE MUTUAL INDUCTANCE (COILS FAR APART) (COILS AT RIGHT ANGLES)
Figure 15-6. Transformers consist of two or more coils of insulated wire wound on a laminated steel core. The induced voltage in the second coil depends on the relative position of the two coils and the number of turns in each coil.
Figure 15-5. Mutual inductance is the effect of one coil inducing a voltage into another coil.
Transformers consist of two or more coils of insulated wire wound on a laminated steel core. The steel core is magnetized when a voltage is applied to one coil. The magnetized steel core induces a voltage into the second‑ ary coil. The primary coil (input side) of a transformer is the coil to which the voltage is connected. The secondary coil (output side) of a transformer is the coil in which the voltage is induced. The laminated steel core is used so that the magnetic induction between the two coils is as high as possible. See Figure 15‑6.
Transformers used in commercial buildings are normally pad-mounted and must be sized large enough for all the loads in the building.
254 ELECTRICAL PRINCIPLES AND PRACTICES
The amount of change in voltage between the primary coil and secondary coil depends on the turns ratio (voltage ratio) of the two coils. A step‑up transformer is a transformer in which the secondary coil has more turns of wire than the primary coil. A step‑up transformer produces a higher voltage on the secondary coil than the voltage applied to the primary. A step‑down transformer is a transformer in which the secondary coil has fewer turns of wire than the primary coil. A step‑down transformer produces a lower voltage on the secondary coil than the voltage applied to the primary. To calculate the relationship between the number of turns and the voltage, apply the formula: N P EP = N S ES
This transformer is a step‑down transformer be‑ cause the voltage is reduced from 25 V to 5 V. The same formula applies to a step‑up transformer. For example, 25 V applied to a transformer primary coil containing 500 turns induces 100 V in the transformer secondary coil containing 2000 turns (25 × (2000 ÷ 500) = 100). In the process of changing voltage from one level to another, transformers also change the current to a lower or higher level. The ratio of primary current to secondary current is inversely proportional to the voltage ratio. For example, if the voltage ratio is 10:1, the current ratio is 1:10. To calculate the current and voltage relationship, apply the formula: I P ES = I S EP
where NP = number of turns in primary coil NS = number of turns in secondary coil EP = voltage applied to primary coil (in V) ES = voltage induced in secondary coil (in V) This formula may be rearranged to calculate any one value when the other three are known.
where IP = current in primary coil (in A) IS = current in secondary coil (in A) ES = voltage induced in secondary coil (in V) EP = voltage applied to primary coil (in V) This formula may be rearranged to calculate any one value when the other three are known.
Example: Calculating Secondary Induced Voltage What is the secondary induced voltage of a transformer that has a secondary coil containing 100 turns, a pri‑ mary coil containing 500 turns, and 25 V applied to the primary coil? N ES = E P × S NP
Example: Calculating Transformer Primary Current What is the current in the primary winding of a trans‑ former when the primary voltage is 240 V, the second‑ ary voltage is 120 V, and a 10 A load is connected to the secondary? E IP = IS × S EP
ES = 25 ×
100 500
I P = 10 ×
ES = 5 V
120 240
IP = 5 A The current potential of a transformer is stepped down any time a transformer steps up the voltage. Likewise, the current potential is stepped up any time a transformer steps down the voltage.
Transformer Ratings
Delta Star, Inc.
Power transformers are used in generating plants to enable efficient transmittal of power over long distances.
Transformers are designed to transform power at one voltage level to power at another voltage level. In an ideal transformer, there is no loss or gain. Energy is simply transferred from the primary circuit to the secondary circuit. For example, if the secondary of a transformer requires 500 W of power to operate the loads connected to it, the primary must deliver 500 W.
Chapter 15 — Transformers and Smart Grid Technology 255
It is standard practice with transformers to use voltage and current ratings and not wattage ratings. It is also standard practice to rate a transformer for its output capabilities because it is the output of the transformer to which the loads are connected. Thus, transformers are rated by their volt‑ampere (VA), or kilovolt‑ampere (kVA) output. Small transformers are rated in either VA or kVA. Large transformers are rated in kVA. For example, a 50 VA transformer may be rated as a 50 VA or 0.05 kVA transformer. A 5000 VA transformer is rated as a 5 kVA transformer. In an ideal transformer, energy is transferred from the primary circuit to the secondary circuit and there is no power loss. However, all transformers have some power loss. Even though most transformers operate with little power loss (normally 0.5% to 8%), there is always a power loss in a transformer. The less the power loss, the more efficient the transformer. The efficiency of a transformer is expressed as a percent‑ age. To calculate the efficiency of a transformer, apply the formula: P Ef = S × 100 Eff PP where Eff = efficiency (in %) PS = power of secondary circuit (in W) PP = power of primary circuit (in W) Example: Calculating Transformer Efficiency What is the efficiency of a transformer that uses 1200 W of primary power to deliver 1110 W of secondary power? P Ef = S × 100 Eff PP 1110 × 100 1200 Ef = 0.925 × 100 Eff Ef = 92.5% Eff Ef = Eff
Power loss in a transformer is caused by hyster‑ esis loss, eddy‑current loss, and copper loss. The total amount of power loss is a combination of the three. Transformers are used on AC circuits. In all AC circuits, the voltage (and magnetic field) are constantly changing. Hysteresis loss is loss caused by magnetism that remains (lags) in a material after the magnetizing force has been removed. Hysteresis loss occurs every half‑cycle of AC when the current reverses direction and some magnetism remains in the iron core.
Eddy‑current loss is loss caused by the induced currents that are produced in metal parts that are being magnetized. In a transformer, eddy‑current loss occurs in the iron core because the iron core is magnetized. The induced currents in the iron core cause heat in the iron core, primary windings, and secondary windings. Eddy currents are reduced by using a laminated steel core. Copper is a good conductor of electricity. However, copper has some resistance. Copper loss is loss caused by the resistance of the copper wire to the flow of cur‑ rent. The higher the resistance, the greater the loss. Hysteresis loss, eddy‑current loss, and copper loss all produce losses in the transformer due to the heat they develop in the metal parts. These losses may be reduced by proper design and installation. Hysteresis loss is reduced by using a silicon‑steel core instead of an iron core. Eddy‑current loss is reduced by using a laminated core instead of a solid core. Copper loss is reduced by using as large a conductor as possible.
Transformer Classification All transformers are used to either step up, step down, or isolate voltage. However, when transformers are used for specific applications, they are normally referred to by the application name, such as a distribution transformer, control transformer, etc. The basic types of transform‑ ers include appliance/equipment, control, bell/chime, instrument (current), distribution, isolation, neon sign, and power transformers. See Figure 15‑7. Appliance/equipment transformers are transformers specifically designed for the appliance or piece of equip‑ ment in which they are used. Electrical and electronic devices, such as TVs, garage door openers, stereos, and computers, require different voltage levels to operate their different circuits. The transformer normally has many secondary voltage output levels that can be used to operate several different circuits. Appliance/equipment transformers are rated from 2 VA (or less) to several thousand VA and deliver secondary voltages from 5 V (or less) to several thousand volts. Control transformers are step‑down transformers that are used to lower the voltage to the control circuit in which the control switches, contactors, and motor starters are connected. Industrial motors and heating elements normally operate on 460/480 V. However, the control circuits used to control the 460/480 V loads normally operate on 115/120 V. Control transformers are normally rated from 25 VA (0.025 kVA) to 2000 VA (2 kVA) and deliver a secondary voltage of 115/120 V. Control trans‑ formers are mounted inside control cabinets and motor control centers.
256 ELECTRICAL PRINCIPLES AND PRACTICES
Transformers
2 VA (OR LESS) TO SEVERAL THOUSAND VA RATING
25 VA TO 2 kVA RATING
20 VA TO 1 kVA RATING
APPLIANCE/EQUIPMENT
CONTROL
BELL/CHIME
2 VA RATING
1.5 kVA TO 500 kVA RATING
125 VA TO 5 kVA RATING
INSTRUMENT (CURRENT)
DISTRIBUTION
ISOLATION
LESS THAN 250 mA RATING
OVER 500 kVA RATING
NEON SIGN
POWER
Figure 15-7. The basic types of transformers include appliance/equipment, control, bell/chime, instrument (current), distribution, isolation, neon sign, and power transformers.
Bells, chimes, buzzers, fire systems, and security sys‑ tems normally operate at voltage levels from 8 V to 24 V. Bell/chime transformers are specifically designed to step down 115/120 V to 8 V, 12 V, 16 V, or 24 V. Bell/chime transformers are normally rated from 20 VA to 1000 VA (1 kVA). The size (VA rating) of the transformer is based on the number and power rating of the loads. The larger the number of loads, the higher the required power rating. Like‑ wise, the higher the power rating of the loads connected to the transformer, the higher the required power rating. Instrument transformers are transformers specifically designed to step down the voltage or current of a circuit to a lower value that can safely be used to measure the voltage,
current, or power in the circuit with a meter (instrument). Instrument transformers are rated according to their pri‑ mary to secondary ratio, such as 10:1, 50:1, 400:5, etc. For example, a current transformer that has a 10:1 ratio delivers 1 A output on the secondary for every 10 A flowing through the primary. There is 2.5 A flowing through the secondary if there is 25 A flowing through the primary. The ammeter (instrument) that is measuring the circuit current (25 A) is connected to the secondary so that only 2.5 A is flowing into the meter. The meter is calibrated to display 25 A whenever there is a 2.5 A input. Instruments and meters may use an external instrument transformer or include an instrument transformer as an integral part of the meter.
Chapter 15 — Transformers and Smart Grid Technology 257
Transformer Overloading All transformers have a power (VA or kVA) rating. The power rating of a transformer indicates the amount of power the transformer can safely deliver. However, like most electrical devices, this rating is not an abso‑ lute value. For example, a 100 VA rated transformer is not destroyed if required to deliver 110 VA for a short period of time.
The heat produced by the power destroys the trans‑ former. The heat destroys the transformer by breaking down the insulation, causing short circuits within the windings of the transformer. Thus, temperature is the limiting factor in transformer loading. The more power the transformer must deliver, the higher the temperature produced at the transformer. Transformers are used to deliver power to a set number of loads. For example, a transformer is used to deliver power to a school. As loads in the school are switched ON and OFF, the power delivered by the transformer changes. At certain times (night), the power output required from the transformer may be low. At other times (during school hours), the power output required from the transformer may be high. Peak load is the maximum output required of a trans‑ former. See Figure 15‑8.
Transformer Load Cycle 150 TRANSFORMER LOAD (% OF TRANSFORMER RATING)
Distribution transformers are step‑down trans‑ formers that reduce high transmitted voltage down to usable residential, commercial, and industrial volt‑ age levels. Although power is efficiently transmitted at high voltages, high voltage is not safe for use in practical applications. Distribution transformers are normally rated from 1.5 kVA to 500 kVA and deliver a secondary voltage of 115 V, 120 V, 208 V, 230 V, 240 V, 460 V, or 480 V. Isolation transformers are transformers that are de‑ signed to isolate the load from the power source. Isola‑ tion transformers have a 1:1 turns (and voltage) ratio. Therefore, the primary voltage is equal to the secondary voltage. The transformer provides isolation between the two sections of the circuit even though the primary and secondary are operating at the same voltage. Neon sign transformers are step‑up transformers designed to step up the secondary voltage to several thousand volts when connected to a primary voltage of 115/230 V. Neon sign transformers are rated accord‑ ing to their secondary voltage. Secondary voltages normally range from 2000 V to 15,000 V. Although the secondary voltage is high, the current rating is relatively low. Current ratings normally range less than 250 mA. Power transformers are large transformers used by power companies in generating plants to step up volt‑ ages for power transmission and in substations to step down voltages. Generated voltage must be stepped up to a high level for efficient transmittal over long distances. The voltage is stepped up to a high level to step the current down to a low level. Low current levels require small wire sizes, reducing cost. Power trans‑ formers are normally rated over 500 kVA (500,000 VA) and used on power lines that operate on voltages over 67 kV (67,000 V). Distribution transformers are the same as power transformers but are smaller and serve a different pur‑ pose in the power distribution system. Small distribution transformers are mounted on poles or the ground. Large distribution transformers are mounted on the ground.
TRANSFORMER RATING PEAK LOAD
100
OVERLOAD
50
TRANSFORMER LOAD 0 12 AM
6
12 PM TIME OF DAY
6
12 AM
Figure 15-8. The power output required from a transformer varies based on the time of day.
A transformer is overloaded when it is required to deliver more power than its rating. A transformer is not damaged when overloaded for a short time period. This is because the heat storage capacity of a trans‑ former ensures a relatively slow increase in internal transformer temperature. Transformer manufacturers list the length of time a transformer may be safely overloaded at a given peak level. For example, a transformer that is overloaded 3 times its rated current has a permissible overload time of about 6 minutes. See Figure 15‑9.
258 ELECTRICAL PRINCIPLES AND PRACTICES
Transformer Overloading 30
Transformer Rated Current Multiplier
20 15
SECONDS
10 8 6 4
MINUTES
3 2 1 2
1
3
4
6 8 10 15 20 30 40 60 80 100
Permissible Overload Time
Figure 15-9. Transformer overloading occurs when a transformer is required to deliver more power than its rating.
Transformer Cooling Methods The methods used to dissipate heat in a transformer include self‑air-cooled, forced‑air-cooled, liquid‑ immersed/self‑air-cooled, and liquid‑immersed/ forced‑air-cooled. See Figure 15‑10.
Transformer Cooling Methods WARM AIR
WARM AIR
H E A T COOL AIR
A self‑air-cooled transformer is a transformer that dissipates heat through the air surrounding the transformer. Heat produced in the windings and core is dissipated into the surrounding air by convection. Convection is heat transfer that occurs when currents circulate between warm and cool regions of a fluid (air). Convection heat transfer is increased by adding radiating fins to the transformer. Forced‑air-cooled transformers are transformers that use a fan to move air over the transformer. Using a fan to speed the convection process increases the power that the transformer can deliver by about 30% over the power that can be delivered without a fan. Multiple high‑velocity fans are used in some applications to in‑ crease the transformer power output by more than 30%. The fans may be designed to remain ON at all times or may be automatically turned ON when the transformer reaches a set temperature. A liquid‑immersed/self-air‑cooled transformer is a transformer that uses refined oil or synthetic oil to help cool the transformer windings. The transformer coils and core are enclosed in a metal tank which is immersed in the oil. The oil is used to conduct heat from the wind‑ ings and core to the outer surface of the transformer. The oil helps slow the heating process by increasing the heat storage capacity of the transformer. This is useful when the transformer is temporarily overloaded during peak usage times.
FANS
SELF-AIRCOOLED
COOL AIR
HEAT HEAT
FORCED-AIRCOOLED
TRANSFORMER WINDINGS WARM AIR
WARM AIR
H E A T COOL AIR
FANS
HEAT HEAT
OIL
COOL AIR
LIQUID-IMMERSED/ SELF-AIR-COOLED
OIL
LIQUID-IMMERSED/ FORCED-AIR-COOLED
Figure 15-10. The methods used to dissipate heat in a transformer include self-air-cooled, forced-air-cooled, liquidimmersed/self-air-cooled, and liquid-immersed/forced-air-cooled.
Fans are used to provide additional cooling to a transformer and can increase the power delivered by 30% above that provided by natural convection.
Chapter 15 — Transformers and Smart Grid Technology 259
1. Determine the total voltage required by the loads if more than one load is connected. The secondary side of the transformer must have a rating equal to the voltage of the loads. 2. Determine the amperage rating or kVA capacity required by the load(s). Add all loads that are (or may be) ON concurrently. 3. Check load(s) frequency on the nameplate. The frequency of the supply voltage and the electrical load(s) must be the same. 4. Check the supply voltage to the primary side of the transformer. The primary side of a transformer must have a rating equal to the supply voltage. Consider each voltage if there is more than one source volt‑ age available. Use a transformer that has primary taps if there is a variation in the supply voltage. The transformer must have a kVA capacity of at least 10% greater than that required by the loads.
A liquid‑immersed/forced‑air-cooled transformer is a transformer that uses refined oil or synthetic oil and fans to cool the transformer. The oil conducts the heat to the outer surface of the transformer and the fans dissipate the heat to the surrounding air.
Sizing Single‑Phase Transformers A transformer is used any time power is delivered to a residential, commercial, industrial, construction, or other site. The size of the transformer is based on the amount of expected power required. This amount normally takes into consideration present and future needs, peak loading, ambient temperature, load types, and other factors that affect transformer operation and temperature. See Figure 15‑11. To size a 1φ transformer, apply the procedure:
Sizing Single-Phase Transformers H1
H2
CHECK SUPPLY VOLTAGE TO PRIMARY SIDE OF TRANSFORMER
4
480 V
2400 V
1φ TRANSFORMER X3
UTILITY SUPPLY VOLTAGE
X1
UTILITY SUPPLY VOLTAGE
X2
Loads Device Lamps
Quantity
Volts
Amps
10
120
1
¹⁄₄ HP Motor
1
120
5.8
1 HP Motor
1
240
8
X3
X1
X3
X1
X2
X3
X1
X2
120 V
X2
120 V 120 V 240 V
240 V
TRANSFORMER SECONDARY
LAMPS = 120 V ¹⁄₄ HP MOTOR = 120 V 1 HP MOTOR = 240 V SECONDARY VOLTAGE = 120/240 V
3
CHECK FREQUENCY RATING OF LOADS ON DEVICE NAMEPLATE
LAMPS = 10 A ¹⁄₄ HP MOTOR = 5.8 A 1 HP MOTOR = 8 A TOTAL = 23.8 A
1
2
Figure 15-11. The size of a transformer is based on the amount of expected power required.
DETERMINE TOTAL VOLTAGE RATING OF LOADS
DETERMINE AMPERAGE OR kVA RATING OF LOADS
260 ELECTRICAL PRINCIPLES AND PRACTICES
A single‑phase full‑load currents conversion table may be used to determine proper kVA capacity when the load rating is given in amperes. See Figure 15‑12.
A 5 kVA transformer is selected for the application because it is the next size available with a capacity of at least 10% greater than that required by the loads.
kVA kV ACAP = E ×
Sizing Three‑Phase Transformers The size of a 3φ transformer is based on the amount of expected power required in the circuit. See Figure 15‑13. To size a 3φ transformer, apply the procedure: 1. Determine the total voltage required by the loads if more than one load is connected. The secondary side of the transformer must have a rating equal to the voltage of the loads. 2. Determine the amperage rating or kVA capacity required by the load(s). Add all loads that are (or may be) ON concurrently. 3. Check the frequency of the load(s) on the nameplate. The frequency of the supply voltage and the electri‑ cal load(s) must be the same. 4. Determine the type of 3φ voltage available. This includes three‑wire no ground or three‑wire with ground (four‑wire). 5. Check the supply voltage to the primary side of the transformer. The primary side of a transformer must have a rating equal to the supply voltage. Consider each voltage when there is more than one source of voltage available. Use a transformer that has primary taps when there is a varia‑ tion in the supply voltage. The transformer must have a kVA capacity of at least 10% greater than that required by the loads. A three‑phase full‑load current conversion table is used to determine the kVA capacity of 3φ circuits when the load rating is given in amperes. See Figure 15‑14. To calculate the kVA capacity of a 3φ transformer when voltage and current are known, apply the formula: I kVA kV ACAP = E × 1.732 × 1000 where kVACAP = transformer capacity (in kVA) E = voltage (in V) 1.732 = constant (for 3φ power) I = current (in A) 1000 = constant
kV CAP kVA
Tech Tip
Single-Phase Full-Load Currents* kVA
120 V
208 V
240 V
277 V
380 V
480 V
0.050
0.4
0.2
0.2
0.2
0.1
0.1
0.100
0.8
0.5
0.4
0.3
0.2
0.2
0.150
1.2
0.7
0.6
0.5
0.4
0.3
0.250
2.0
1.2
1
0.9
0.6
0.5
0.500
4.2
2.4
2.1
1.8
1.3
1
0.750
6.3
3.6
3.1
2.7
2
1.6
1
8.3
4.8
4.2
3.6
2.6
2.1
1¹⁄₂
12.5
7.2
6.2
5.4
3.9
3.1
2
16.7
9.6
8.3
7.2
5.2
3
25
14.4
12.5
10.8
7.9
5
41
24
20.8
18
13.1
10.4
7¹⁄₂
62
36
31
27
19.7
15.6
10
83
48
41
36
26
20.8
15
125
72
62
54
39
31
4.2 62
* in A
Figure 15-12. A single-phase full-load currents conversion table may be used to determine proper kVA capacity when the load rating is given in amperes.
To calculate kVA capacity of a 1φ transformer when voltage and current are known, apply the formula: kVA kV ACAP = E ×
I 1000
where kVACAP = transformer capacity (in kVA) E = voltage (in V) I = current (in A) 1000 = constant Example: Calculating 1φ Transformer Capacity What is the kVA capacity of a 1φ transformer used in a 240 V circuit that has loads of 5 A, 3 A, and 8 A con‑ nected to the secondary?
kV CAP kVA kV CAP kVA
I 1000 16 = 240 × 1000 3840 = 1000 = 3.84 k kV VA
In emergency situations, most transformers may be kept operational by spraying water on the transformer housing—not exposed electrical parts. This may increase output by up to 60%.
Chapter 15 — Transformers and Smart Grid Technology 261
Sizing Three-Phase Transformers A
UTILITY SUPPLY VOLTAGE
2400 V
B C
CHECK SUPPLY VOLTAGE OF PRIMARY SIDE OF TRANSFORMER
H1
5
TRANSFORMERS MUST HAVE A kVA CAPACITY AT LEAST 10% GREATER THAN LOAD REQUIREMENTS
H2
X3
H1
X1
H2
X3
X1
X2
DETERMINE TYPE OF 3φ VOLTAGE AVAILABLE
H1
H2
X3
X2
X2
4 a 120 V N
240 V
240 V
120 V b 240 V
WYE
DELTA
c
LAMPS = 120 V ¹⁄₂ HP, 1φ MOTOR = 120 V 10 HP, 3φ MOTOR = 240 V SECONDARY VOLTAGE = 120/240 V
LAMPS = 50 A ¹⁄₂ HP, 1φ MOTOR = 19.6 A 10 HP, 3φ MOTOR = 420 A TOTAL = 489.6 A
1
2
Loads DETERMINE TOTAL VOLTAGE RATING OF LOADS
Device
Quantity
Volts
Amps
50
120
1
¹⁄₂ HP, 1φ Motors
2
120
10 HP, 3φ Motor
15
240
Lamps
9.8 28
DETERMINE AMPERAGE OR kVA RATING OF LOADS
CHECK FREQUENCY RATING OF LOADS ON DEVICE NAMEPLATE
3
Figure 15-13. The size of a 3φ transformer is based on the amount of expected power required in the circuit.
Example: Calculating 3φ Transformer kVA Capacity
Three-Phase Full-Load Currents* kVA
208 V
240 V
480 V
600 V
3
8.3
7.2
3.6
2.9
4
12.5
10.8
5.4
4.3
6
16.6
14.4
7.2
5.8
9
25
21.6
10.8
15
41
36
18
14.4
22
62
54
27
21.6
30
83
72
36
28
45
124
108
54
43
8.6
* in A
Figure 15-14. A three-phase full-load currents conversion table is used to determine the kVA capacity of 3� circuits when the load rating is given in amperes.
What is the kVA capacity of a 3φ transformer used in a 240 V circuit that has loads of 25 A, 30 A, and 8 A connected to its secondary? I 1000 63 = 240 × 1.732 × 1000 26,188 = 100000 = 26.188 kVA
kVA kV ACAP = E × 1.732 × kV CAP kVA kV CAP kVA kV CAP kVA
262 ELECTRICAL PRINCIPLES AND PRACTICES
A 30 kVA transformer is selected for the appli‑ cation because it is the next size available with a capacity of at least 10% greater than that required by the loads.
Determining Single‑Phase Transformer Current Draw A transformer has a voltage ready to be used. However, no current flows and no power is used if no load is con‑ nected to the transformer. Current flows and electrical power is consumed when loads are connected to the available voltage source. The amount of current flow depends on the power rating of the load. The higher the power rating, the larger the amount of current flow. Likewise, the lower the power rating, the smaller the amount of current flow. Knowing the amount of current flowing in a circuit is necessary because the conductor size is based on the amount of expected current flow. To calculate transformer current draw when kVA capacity and voltage are known, apply the formula: 1000 I = kVA kVACAP CAP × E where I = current draw (in A) kVACAP = transformer capacity (in kVA) 1000 = constant (to convert VA to kVA) E = voltage (in V) Example: Calculating 1φ Transformer Current Draw What is the current draw of a 1φ, 41 kVA, 120 V rated transformer when fully loaded? 1000 I = kVA kVACAP CAP × E 1000 I = 41 × 120 41, 000 I= 120 I = 342 A
Determining Three‑Phase Transformer Current Draw The current draw of a 3φ transformer is calculated similarly to the current draw of a 1φ transformer. The only difference is the addition of the constant (1.732) for 3φ power. To calculate current draw of a 3φ trans‑ former when kVA capacity and voltage are known, apply the formula: 1000 I = kVA kVACAP CAP × E × 1.732 where I = current (in A) kVACAP = transformer capacity (in kVA) 1000 = constant E = voltage (in V) 1.732 = ( 3 ) Example: Calculating 3φ Transformer Current Draw What is the current draw of a 3φ, 30 kVA, 480 V rated transformer when fully loaded? 1000 E × 1.732 1000 I = 30 × 480 × 1.732 30, 000 I= 831 I = 36.1 A I = kVA kVACAP CAP ×
Note: When 3φ problems are calculated, the fol‑ lowing values* may be substituted to eliminate one mathematical step: For 208 V × 1.732, use 360 For 230 V × 1.732, use 398 For 240 V × 1.732, use 416 For 440 V × 1.732, use 762 For 460 V × 1.732, use 797 For 480 V × 1.732, use 831 ∗ 3 = 1.732
Tech Fact The first transformer built in the U.S. for commercial use was manufactured by the Westinghouse Electric Company in 1892. The transformer was a 2 kVA dry-type transformer. Dry-type transformers rely on fans and convection airflow for cooling. Transformers manufactured today are rated over 1000 MVA and weigh over 500,000 lb.
Transformer Standard Ambient Temperature Compensation Temperature rise in a transformer is the temperature of the windings above the existing ambient temperature. Transformer nameplates list their maximum tempera‑ ture rise. Transformer normal ambient temperature is 40°C.
Chapter 15 — Transformers and Smart Grid Technology 263
Transformer Compensation Ratings Ambient Temperature
A transformer must be derated if the ambient tem‑ perature exceeds 40°C. Transformer derating charts are used to derate transformers in high ambient tempera‑ tures. See Figure 15‑15. To calculate the derated kVA capacity of a transformer operating at a higher‑than‑ normal ambient temperature condition, apply the formula: kVA = rated kVA × maximum load where kVA = derated transformer capacity (in kVA) rated kVA = manufacturer transformer rating (in kVA) maximum load = maximum transformer loading (in %)
LESS THAN 10°C
ACTUAL TEMPERATURE AVERAGE TEMPERATURE
24 HOURS
Transformer Deratings Maximum Ambient Temperature (°C)
Maximum Transformer Loading (%)
40
100
45
96
50
92
55
88
60
81
65
80
70
76
Ambient Temperature
STANDARD COMPENSATION RATING
OVER 10°C
ACTUAL TEMPERATURE AVERAGE TEMPERATURE
24 HOURS
SPECIAL COMPENSATION RATING
Figure 15-15. A transformer must be derated if the ambient temperature exceeds 40°C.
Example: Calculating Standard Transformer Derating What is the derated kVA value of a 30 kVA rated trans‑ former installed in an ambient temperature of 50°C? kVA = rated kVA × maximum load kVA = 30 × 0.92 kVA = 27.6 kVA
Transformer Special Ambient Temperature Compensation Standard ambient temperature is the average tempera‑ ture of the air that cools a transformer over a 24‑hour period. Standard ambient temperature assumes that maximum temperature does not exceed 10°C above average ambient temperature. A transformer is derated above the standard values when the maximum temperature exceeds the average temperature by more than 10°C. A transformer is derated by 1Z\x% for each 1°C above 40°C when the maximum ambient temperature exceeds 10°C above the average temperature. See Figure 15‑16.
Figure 15-16. A transformer is derated above the standard values when the maximum temperature exceeds the average temperature by more than 10°C.
For example, a 30 kVA rated transformer installed in an ambient temperature of 50°C (maximum temperature ex‑ ceeds ambient temperature by 10°C) is derated to 25.5 kVA. The transformer is derated by 1Z\x% for each degree above 40°C. A 50°C ambient temperature is 10°C above 40°C so the transformer is derated 15% (10°C × 1Z\x% = 15%). kVA = rated kVA × maximum load kVA = 30 × 0.85 (15% derating) kVA = 25.5 kVA
Single‑Phase Residential Transformer Connections Electricity is used in residential applications (one‑family, two‑family, and multifamily dwellings) to provide energy for lighting, heating, cooling, cooking, running motors, etc. The electrical service to dwellings is normally 1φ, 120/240 V. The low voltage (120 V) is used for general‑purpose receptacles and general lighting. The high voltage (240 V) is used for heating, cooling, cooking, etc.
264 ELECTRICAL PRINCIPLES AND PRACTICES
is a transformer connection that has one end of each transformer coil connected together. The remaining end of each coil is connected to the incoming power lines (primary side) or used to supply power to the load(s) (secondary side). A delta configuration is a transformer connection that has each transformer coil connected end‑to‑end to form a closed loop. Each con‑ necting point is connected to the incoming power lines or used to supply power to the load(s). The voltage output and type available for the load(s) is determined by whether the transformer is connected in a wye or delta configuration. See Figure 15‑18.
Residential electrical service may be overhead or lateral. Overhead service is electrical service in which service‑entrance conductors are run from the utility pole through the air and to the dwelling. Lateral service is electrical service in which service‑entrance conduc‑ tors are run underground from the utility service to the dwelling. See Figure 15‑17.
Three‑Phase Transformer Connections Three 1φ transformers may be connected to develop 3φ voltage. The three transformers may be connected in a wye or delta configuration. A wye configuration
Residential Electric Power WEATHERHEAD
SERVICEENTRANCE CONDUCTORS TO UTILITY TRANSFORMER METER
BARE NEUTRAL
CONDUIT MAST
ENTRANCE ELL
STEP-DOWN TRANSFORMER GROUND CONNECTION
120 V
120 V
240 V
TO OVERHEAD OR LATERAL SERVICE ENTRANCE
TO LOADS GROUNDED CONDUCTOR
COLD WATER PIPE
PRIMARY POWER LEADS
HOT WIRE
FUSED DISCONNECT AND DISTRIBUTION PANEL
NEUTRAL WIRE HOT WIRE GENERAL-PURPOSE RECEPTACLES AND GENERAL LIGHTING
METER SHUNT WITH APPROVED GROUNDING CLAMPS
OVERHEAD SERVICE METER
TRANSFORMER
HEATING, COOLING, MOTORS, ETC.
FUSED DISCONNECT AND DISTRIBUTION PANEL TO LOADS
TO UTILITY SERVICE
SERVICEENTRANCE CONDUCTORS
LATERAL SERVICE Figure 15-17. Residential electrical service may be overhead or lateral service.
Chapter 15 — Transformers and Smart Grid Technology 265
The advantage of a delta‑to‑delta connection is that if one transformer is disabled, the other two may be used in an open‑delta connection for emergency power. The rating of the open‑delta bank is 57.7% of the original three transformer bank, but 3φ power is available until repairs are made. One of the delta transformers is center‑tapped to supply both 3φ voltage and 1φ voltage. Single‑phase voltage at 120/240 V is available when the transformer is center‑tapped. However, because only one trans‑ former is tapped, the transformer that is tapped carries all of the 1φ, 120/240 V load and Z\c of the 3φ, 240 V load. The other two transformers each carry Z\c of the 3φ, 240 V load. For this reason, this connection should be used in applications that require a large amount of 3φ power and a small amount of 1φ power.
Transformer Configurations a
A
N
N
C
c
B
PRIMARY SIDE
b
SECONDARY SIDE
WYE CONFIGURATION a
A
C
c
B
PRIMARY SIDE
b
SECONDARY SIDE
DELTA CONFIGURATION Figure 15-18. Transformers may be connected in a wye or delta configuration.
Three‑Phase, Delta‑to‑Delta Connections
Three‑Phase, Wye‑to‑Wye Connections Three transformers may be connected in a wye‑to‑wye connection. A wye‑to‑wye transformer connection is used to supply both 1φ and 3φ voltage. In a wye‑to‑wye transformer connection, the ends of each transformer are connected together. See Figure 15‑20.
Three transformers may be connected in a delta‑to‑delta connection. A delta‑to‑delta transformer connection is used to supply 3φ voltage on the secondary. In a delta‑to‑delta connection, each transformer is connected end‑to‑end. See Figure 15‑19.
Three-Phase, Delta-to-Delta Connections HIGHVOLTAGE SIDE
A B C H1
X2
H2
H1
H2 1
H1
2
X2
X1
H2 3
X1
TRANSFORMER BANK
X2
X1 CT
240 V
240 V
120 V
120 V
a LOWVOLTAGE SIDE
b c N
A 3
C
1
B
2
120 V, 5 A LIGHT
a N
1
3 c
2
L
b
N
M
M
240 V, 3φ 50 A MOTOR
240 V, 1φ 10 A MOTOR
M
LOADS
120 V, 1φ 15 A MOTOR
Figure 15-19. Three transformers may be connected in a delta-to-delta configuration in which each transformer is connected end-to-end.
266 ELECTRICAL PRINCIPLES AND PRACTICES
Three-Phase, Wye-to-Wye Connections A HIGHVOLTAGE SIDE
B C N A 1 H1
H2
N 3
H1
1
H2
H1
2
H2 3
TRANSFORMER BANK
2 B
C a
X2
X1
X2
X1
X2
X1
1 X2 N 3
2 120 V
b
c
120 V
120 V
a
LOWVOLTAGE SIDE
b c N
L
120 V, 5 A LIGHT
L
120 V, 5 A LIGHT
M
M
M
208 V, 3φ 50 A MOTOR
208 V, 1φ 10 A MOTOR
120 V, 1φ 15 A MOTOR
Figure 15-20. Three transformers may be connected in a wye-to-wye configuration in which the ends of each transformer are connected together.
The advantage of a wye‑connected secondary is that the 1φ power draw may be divided equally over the three transformers. Each transformer carries Z\c of the 1φ and 3φ power if the loads are divided equally. A disadvantage of a wye‑to‑wye connection is that interference with telephone circuits may result.
Tech Fact K-rated transformers are used when powering nonlinear loads such as computers. A higher K-rating means a transformer is designed to handle the higher heat produced by nonlinear loads.
Chapter 15 — Transformers and Smart Grid Technology 267
Delta‑to‑Wye/Wye‑to‑Delta Connections Transformers may also be connected in a delta‑to‑wye or wye‑to‑delta connection. The connection used depends on the incoming supply voltage, the requirements of the loads, and the practice of the local power company. A delta‑to‑wye transformer connection delivers the same voltage output as the wye‑to‑wye transformer connec‑ tion. The difference is the primary is supplied from a delta system. A wye‑to‑delta transformer connection delivers the same voltage output as the delta‑to‑delta transformer connection. The difference is that the pri‑ mary is supplied from a wye system. Substations Substations serve as a source of voltage transforma‑ tion and control along the distribution system. Their function includes: • Receiving voltage generated and increasing it to a level appropriate for transmission • Receiving the transmitted voltage and reducing it to a level appropriate for customer use
• Providing a safe point in the distribution system for disconnecting the power in the event of problems • Providing a place to adjust and regulate the outgo‑ ing voltage • Providing a convenient place to take measurements and check the operation of the distribution system • Providing a switching point where different connec‑ tions may be made between various transmission lines Substations have three main sections: primary switchgear, transformer, and secondary switchgear sections. See Figure 15-21. Depending on the func‑ tion of the substation (step-up or step-down voltage), the primary or secondary switchgear section may be the high-voltage or low-voltage section. In a step-up substation, the primary switchgear section is the lowvoltage section and the secondary switchgear section is the high-voltage section. In a step-down substation, the primary switchgear section is the high-voltage section and the secondary switchgear section is the low-voltage section. The substation sections normally include break‑ ers, junction boxes, and interrupter switches.
Substations
OR
OR
W
PRIMARY SWITCHGEAR SECTION
TRANSFORMER SECTION
SECONDARY SWITCHGEAR SECTION SECONDARY (BUILDING MAIN) SWITCHGEAR
DANGER HIGH VOLTAGE OVERHEAD
PRIMARY SWITCHGEAR
33 kVA/4160 V SERVICE TRANSFORMERS CABLE VAULT DUCT BANK TO EQUIPMENT ROOM
Figure 15-21. Substations have three main sections: primary switchgear, transformer, and secondary switchgear sections.
268 ELECTRICAL PRINCIPLES AND PRACTICES
Transformer Tap Connections Transformer taps are connecting points that are provided along the transformer coil. Taps are available on some transformers to correct for excessively high or low voltage conditions. The taps are located on the primary side of the transformer. Standard taps are provided for 2% and 5% of rated primary voltage. See Figure 15‑23. For example, if a transformer has a 480 V primary rating and the available supply voltage is 504 V, the primary should be connected to the 5% above‑normal tap. This ensures that the secondary voltage is correct even when the primary voltage is high.
Substations may be entirely enclosed in a building or totally in the open, as in the case of outdoor substations located along a distribution system. The location for a substation is generally selected so that the station is as near as possible to the area to be served. Substations can be built to order or purchased from factory-built, metal-enclosed units. The purchased units are unit substations. A unit substation offers standard‑ ization and flexibility for future changes when quick replacements are needed.
Transformer Load Balancing The loads connected to a transformer should be con‑ nected so that the transformer is as electrically bal‑ anced as possible. Electrical balance occurs when loads on a transformer are placed so that each coil of the transformer carries the same amount of current. See Figure 15‑22.
Tech Fact Transformer taps can be physical taps on the transformer or can be fast-acting electronic taps that can automatically adjust the output voltage as needed.
Transformer Load Balancing A
5 kVA RATED TRANSFORMER BANK C
A TO N = 11 kVA B TO N = 10 kVA C TO N = 12 kVA
LOAD
LOAD
N
CORRECT LOADING
3 kVA
8 kVA
EACH TRANSFORMER WINDING LOADED LESS THAN 15 kVA/φ LIMIT
10 kVA LOAD
B
45 kVA = kVA/φ LIMIT 3φ 7 kVA
5 kVA
THREE-PHASE LOAD
LOAD
5 kVA RATED 1 kVA 120 V
CORRECT LOADING
LOAD
240 V
10 kVA RATED TRANSFORMER
ELECTRICALLY BALANCE EACH SECONDARY WINDING RATED AND LOADED TO 5 kVA
8 kVA LOAD 120 V
SINGLE-PHASE
1 kVA
5 kVA RATED
LOAD
Figure 15-22. The loads connected to a transformer should be connected so that the transformer is as electrically balanced as possible.
Chapter 15 — Transformers and Smart Grid Technology 269
Transformer Taps DRY TYPE MODEL #
T624A762
SERIAL #
68A
INDOOR
60 Hz
50
HV
480 V LINE-TO-LINE
LV
208 V LINE-TO-LINE
LV
120 V LINE-TO-NEUTRAL 400 LB
H1, H2, H3 = HIGH SIDE
CLASS AA
H2 X1 H1
X3
N X3
H3
H3 1 2 3 4 5 6 7
JUMPER CONNECTIONS EACH PHASE
X2
150°C RISE
kVA
WEIGHT
3φ
H2 1 2 3 4 5 6 7
X2
H1 1 2 3 4 5 6 7
X1
N
X1, X2, X3 = LOW SIDE
VOLTS
TAP
503
1
493
2
480
3
466
4
456
5
443
6
433
7
Figure 15-23. Transformer taps are connecting points that are provided along the transformer coil.
Single‑Phase Transformer Parallel Connections Additional power is required when the capacity of a transformer is insufficient for the power requirements of the load(s). Additional power may be obtained by changing the overloaded transformer to a larger size (higher kVA rating) or adding a second transformer in parallel with the overloaded transformer. The best and most efficient method is to replace the overloaded transformer with a larger one. However, in some applica‑ tions, it is easier to add a second transformer in parallel. These include systems where extra power is needed only temporarily or a larger transformer is not available. Single‑phase transformers may be connected in paral‑ lel as long as certain conditions are met. These conditions include: • Primary and secondary voltage ratings are identical. • Frequencies are the same. • Tap settings are identical. • Impedance of either transformer is within ±7% (93% to 107%) of the other. See Figure 15‑24. The total power rating of two compatible, 1φ trans‑ formers connected in parallel is equal to the sum of the individual power ratings. To calculate the total power rating of two 1φ transformers connected in parallel, apply the formula: kVAT = kVA1 + kVA2 where kVAT = total rating of transformer combination (in kVA) kVA1 = rating of transformer 1 (in kVA) kVA2 = rating of transformer 2 (in kVA)
Single-Phase Transformer Parallel Connections H1
HIGH-VOLTAGE SIDE
H2
TRANSFORMER 1 H1
H2
H1
H2
X2
X1
X2
X1
TRANSFORMER 2 X2
LOW-VOLTAGE SIDE
X1
Figure 15-24. Single-phase transformers may be connected in parallel as long as certain conditions are met.
Example: Calculating Total Power Rating— Parallel‑Connected Transformers What is the total output rating of two compatible 1φ, 5 kVA transformers connected in parallel? kVAT = kVA1 + kVA2 kVAT = 5 + 5 kVAT = 10 kVA
270 ELECTRICAL PRINCIPLES AND PRACTICES
Three‑Phase Transformer Parallel Connections Like 1φ transformers, 3φ transformers may also be con‑ nected in parallel. The conditions that must be met to connect 3φ transformers in parallel include: • Primary and secondary voltage ratings are identical. • Frequencies are the same. • Tap settings are identical. • Impedance of either transformer is within ±7% (93% to 107%) of the other. • Angular displacement of transformer banks is the same. For example, both banks must have a 0°, 30°, or 180° angular displacement. Standard angular dis‑ placements are 0° for wye‑to‑wye or delta‑to‑delta connected banks and 30° for wye‑to‑delta or delta‑to‑wye connected banks. See Figure 15‑25. Calculating the total power rating of two compat‑ ible, 3φ transformers connected in parallel is similar to calculating the power rating of two compatible 1φ trans‑ formers connected in parallel. The total power rating of two compatible 3φ transformers connected in parallel equals the sum of the individual power ratings (kVA).
dry-type transformers. See Figure 15-26. National Fire Protection Association (NFPA) Sections 450.21 through 450.27 covers the installation of all transformers. Follow‑ ing these requirements protects persons working around the transformer, helps prevent fires, and reduces the chance of an electrical shock. Always follow NEC® and NFPA requirements when installing transformers.
Transformer Installation Extreme care must be taken when working around trans‑ formers because of the high voltage present. Ensure that proper protective equipment is used and all plant safety pro‑ cedures are followed. All transformer installations should follow National Electrical Code® (NEC®) and National Fire Protection Association (NFPA) requirements. For example, NEC® Section 450.21 covers the installation of indoor
Fluke Corporation
Transformers are tested to ensure that each coil is as electrically balanced as possible.
Three-Phase Transformer Parallel Connections HIGHVOLTAGE SIDE
LOWVOLTAGE SIDE
A B C H1
H2 H1
H2 H1
H2
H1
H2 H1
H2 H1
H2
X2
X1 X2
X1 X2
X1
X2
X1
X1
X1
X2
X2
a b c
TRANSFORMER BANK 1
TRANSFORMER BANK 2
Figure 15-25. Like 1φ transformers, 3φ transformers may also be connected in parallel as long as certain conditions are met.
Chapter 15 — Transformers and Smart Grid Technology 271
Dry-Type Transformers—Installed Indoors Dry-type transformers may be installed indoors when they are rated at not more than 112š ₂ kVA and not more than 600 V, and the transformer is completely enclosed except for ventilating openings.
CASE
FIRE-RESISTANT ROOM
D TRANSFORMER OVER 112½ kVA WITH CLASS 155 OR HIGHER INSULATION
COILS
Fluke Corporation
TERMINAL ARRANGMENTS 2″ × 12″ ROOF JOISTS
WOOD PANELING
COMBUSTIBLE MATERIAL
NON-FIRE RESISTANT ROOM
12′ MINIMUM
â ľâ „â‚ˆâ€ł PLYWOOD
12″ MINIMUM CLEARANCE
A
VENTILATION OPENING
6′ MINIMUM
6′ MINIMUM
TRANSFORMER OVER 112½ kVA WITH CLASS 155 OR HIGHER INSULATION
50 kVA, 480 V DRY-TYPE TRANSFORMER
FIRE-RESISTANT HEAT-INSULATING MATERIAL
B
E
WALLBOARD
WOOD PANELING
C
NO MINIMUM NO MINIMUM CLEARANCE CLEARANCE VENTILATION COMPLETELY SYSTEM ENCLOSED
F
COMPLETELY ENCLOSED TRANSFORMER OVER 112½ kVA WITH CLASS 155 OR HIGHER INSULATION
50 kVA, 480 V DRY-TYPE TRANSFORMER A. 450.21 (A) Dry-type transformers installed indoors and rated at 112š ₂ kVA or less shall be a minimum of 12″ from combustible material. B. 450.21 (A) The 12″ minimum is not required when transformers are separated from combustible material by fire-resistant, heat-insulating material. C. 450.21 (A) The 12″ minimum is not required when the transformer is 600 V or less and completely enclosed.
NON-FIRE RESISTANT ROOM
D. 450.21 (B) Dry-type transformers over 112š ₂ kVA rating shall be installed in fire-resistant rooms. E. 450.21 (B) Exception No. 1 Transformers with Class 155 or higher insulation are permitted to be installed in a non-fire-resistant room provided they are separated from combustible material by a minimum of 6′ horizontally and 12′ vertically. F. 450.21 (B) Exception No. 2 Transformers with Class 155 or higher insulation and completely enclosed except for ventilation openings are permitted to be enclosed in a non-fire-resistant room
Figure 15-26. All transformer installations should follow NECÂŽ and NFPA requirements.
Utility Power Factor Penalty Utilities produce and deliver power that they sell to residential, commercial, and industrial customers. In addition, utilities also sell power to third party com‑ panies that buy power in bulk and resell it to cities and municipalities. Utilities need to be concerned with true power and apparent power. True power is the actual power used in an electrical circuit expressed in watts (W).
True power is measured on an electric meter in kilowatt hours (kWh), and the user is billed for kilowatt hours used. Apparent power is the product of the voltage and current in a circuit calculated without considering the phase shift that may be present between the voltage and current in the circuit. True power equals apparent power in loads that include only resistance. For example, in an electric range, true power equals apparent power. Apparent power is higher
272 ELECTRICAL PRINCIPLES AND PRACTICES
than true power in loads that include coils (inductance) because voltage and current are out of phase in such loads. For example, apparent power is 20% to 35% higher than true power in electric motors because the inductance pro‑ duced by the motor coils results in a poor power factor. See Figure 15-27. Power factor (PF) is the ratio of true power used in an AC circuit to apparent power delivered to the circuit. When true power equals apparent power, the power factor is 1 (100%) and the system is 100% efficient. In most systems, however, true power is less than apparent power and the system is less than 100% efficient. This means that a utility must build a larger distribution system than required by the power-consuming loads. Some utilities build the cost of the larger distribution system into the customer electric bill and charge the customer a flat rate for the kilowatt hours used. This is common for residential customers. However, since large commercial and industrial users consume large amounts of power, utilities often add a power factor penalty to the electric bill for these customers. Utilities may impose a power factor penalty on thirdparty companies similar to penalties imposed on large com‑ mercial and industrial customers. The electric bills for large commercial and industrial companies may also include a
high demand charge because of their use of power at times when the generating and distribution system is close to its maximum output. See Figure 15-28. Because of the power factor penalty imposed by utili‑ ties on large commercial and industrial customers, these companies often add power factor correction components, such as capacitor banks, to their systems to improve their power factor and reduce their electric bills. In the past, power factor was not a concern for residential customers because a utility did not include a power factor penalty as it was built into the kilowatt hour rate charged. As cities and municipalities purchased power from utilities, they became large customers that were subject to power factor penalties, which they then passed along to residential customers. A typical utility power factor penalty is charged when the customer power factor drops below approximately 85% to 90%, or even 95% in some areas where the power demand is high compared to the available power produced. Some utilities charge for true power as measured on an electric meter and multiply the value by a power factor penalty factor. For example, if an electric meter measures 100,000 kWh and a 10% power factor penalty is applied, the customer is billed for 110,000 kWh (100,000 × 1.1 = 110,000). Some utilities simply charge for apparent power (demand rate).
True Power and Apparent Power Comparison ELECTRIC RANGE (TRUE POWER EQUALS APPARENT POWER)
ELECTRIC METERS MEASURE TRUE POWER (kWh) AND CUSTOMERS ARE BILLED FOR TRUE POWER USAGE TRANSFORMER RATED IN kVA
TO UTILITY SERVICE
TO LOADS SERVICEENTRANCE CONDUCTORS
UTILITY MUST BUILD DISTRIBUTION SYSTEM FOR APPARENT POWER (kVA) REQUIREMENTS
ELECTRIC MOTOR (APPARENT POWER HIGHER THAN TRUE POWER)
Figure 15-27. Utilities must deliver apparent power but charge for true power.
Chapter 15 — Transformers and Smart Grid Technology 273
Electric Bill
ACE Electric Company
Customer Charges-Industrial Rates (per demand meter per month)
$75.00
Demand Charges (per kW) Summer
Winter
Peak
$15.25
No Peak Generation
Partial Peak
$4.20
$3.90
High Demand Charge (per location) Demand over 499 kW for any three consecutive
$420.00
Energy Charges (per kWh) Peak
$0.10550
No Peak Generation required
Partial Peak
$0.08755
$0.08000
Off Peak
$0.07520
$0.07000
Additional Power Factor Charge (average usage) Above 85%
None
Below 84.99% (per kWh)
$0.00125
Monthly Bill Amount: Demand (kW) Peak
340
Demand (kW) Partial Peak
1025
Energy (kWh)
415,260
Average Power Factor
85.6%
Monthly Bill (summer month) Meter Charge
$75.00
Demand Charge Peak
$5,185.00
Demand Charge Partial Peak
$4,305.00
Energy
$31,227.56
Power Factor
0
Total Power Bill:
$40,792.56
State/County Economic Stimulus Credits (5% reduction for 2 years)
($2,039.63)
Total Bill:
$38,752.93
Figure 15-28. The electric bill for large commercial and industrial users often includes a power factor penalty.
Utility Peak Demand Penalty In addition to a utility imposing a power factor penalty on customers, some utilities also impose a peak demand penalty. A peak demand penalty is imposed because a utility must build their distribution system large enough
to handle the highest power draw at any one time (peak demand). The exact manner in which a customer is billed for power usage depends on the type of electric meter used to measure the incoming power and the utility-approved rates for the area.
274 ELECTRICAL PRINCIPLES AND PRACTICES
Peak demand by customers can be reduced through the use of energy-efficient devices, such as LED lamps and Energy Star®-rated devices, and by improving the power factor so that the distribution system can deliver more true power. The power distribution system from the point of production to the load must be constantly monitored and improved because the amount of power usage continuously increases and often at a faster rate than power production.
Load Shedding All electrical systems have a limit to the amount of power they can provide. This includes power sources as small as AAA batteries or as large as the largest utility. Regardless of the size of the electrical system, problems develop once capacity is reached. Electrical system capacity problems range from poorly performing loads such as lamps dimming, reduc‑ tion in heat output, and computers rebooting to large problems such as equipment damage. These problems can be reduced or minimized by shedding (removing) loads to reduce the amount of power required. Load shedding is the deactivation or modulation of noncriti‑ cal loads in order to decrease electrical power demand. Load shedding is normally performed automatically by a utility because utilities are familiar with the system limits, amount of power being used, and location of maximum usage. Automatic load shedding is accom‑ plished by connecting electronic sensing and monitoring devices to the loads or in the power panel that can be controlled by the customer and/or the utility. The type of loads to be automatically controlled must be considered as to their importance within the system and to the customer. Some loads can be shed without damaging the load or customer operation. Other loads must be shed over time, and some loads should never be shed. For example, there are areas and/or times where the temperature of electric hot water can be reduced or the heater turned OFF. There are also applications where the temperature of water should not be decreased exces‑ sively, such as in commercial dishwashers. The exact use of air conditioning and central elec‑ tric furnaces must be considered before these loads are shed. A minimum occupancy comfort level must be set. Temperatures can be reduced when heating is required or increased when air conditioning is required to a prede‑ termined level, or the system can be set so that different areas are allowed to cool or heat within preset limits. Lighting loads can be shed to conserve energy as long as the reduced lighting does not cause a safety or
productivity problems. For example, some lighting loads in general-use areas can be shed, but lighting loads for staircases should not be shed. Large power-consuming appliance loads, such as loads for dishwashers, washing machines, and dry‑ ers, can normally be shed during peak usage times and turned ON at off-peak times. Many small powerconsuming electronic device loads should not be automatically shed except in an emergency. These devices include personal computers, entertainment systems, and small appliances such as coffeemakers. Such loads can be manually shed by individuals during peak usage times. Some loads should never be automatically or manually shed. Loads for fire detection equipment and alarms, security systems, exit signs, elevators, public address systems, and any load that would cause a safety, health, or security risk should never be shed. A customer sheds loads to reduce or eliminate a high-power-demand charge during peak usage times. A utility sheds loads to keep the system from over‑ loading. Without an organized method to shed loads once the system is at its maximum, a utility has to impose a brownout. A brownout is the deliberate re‑ duction of the voltage level by a utility to conserve energy during peak usage times.
Power Factor Correction In addition to load shedding, a utility and/or customer can increase the available power by correcting the system power factor. Poor power factor is caused by motor loads that cause current to lag voltage. Poor power factor can be improved by adding power factor correcting capacitor banks in the utility distribution system and/or in the user’s facility. Utilities add ca‑ pacitor banks to their distribution system to reduce the amount of apparent power and increase the amount of true power. Large power-consuming commercial and industrial plants add capacitor banks to improve their power factor and reduce the power factor penalty imposed by utilities. See Figure 15-29. Theoretically, capacitors should improve the power factor to 1 (100%). In practical use however, capacitors are used to correct the power factor to approximately 95%. Adding excessive capacitance into a circuit causes the voltage to lead current and cause poor power factor, because power factor is less than 1 (100%) any time voltage and current are out of phase. Improving power factor reduces the electric bill and increases system capacity. See Figure 15-30.
Chapter 15 — Transformers and Smart Grid Technology 275
Power Factor Correction TO TRANSMISSION SUBSTATION
PANELBOARD
OUTSIDE TRANSFORMER VAULT CAPACITOR BANKS ADDED ALONG UTILITY SYSTEM TO IMPROVE POWER FACTOR AND HELP UTILITY INCREASE TRUE POWER AVAILABLE
UTILITY SIDE
METERED SWITCHBOARD
FACILITY SIDE
CAPACITOR BANKS ADDED AT POINT OF MOTOR USAGE
CAPACITOR BANKS ADDED IN FACILITY TO REDUCE POWER FACTOR PENALTY AND INCREASE AVAILABLE POWER
MOTOR CONTROL CENTER POWER DISTRIBUTION PANEL CAPACITOR BANKS ADDED AT MAIN POWER DISTRIBUTION CENTER
Figure 15-29. Poor power factor can be improved by adding power-factor-correcting capacitor banks in the utility distribution system and/or in the customer’s facility.
Power Factor Range OVER-CORRECTED POWER FACTOR RANGE
PF = 0.9 1
KW
LAGGING
100% kW PF = 1 PF = 0.9 PF = 0.8
0.75 0.50 0.25
-0.75 -0.50 -0.25
0
0.25
0.50
0.75
AMOUNT OF INCREASED CURRENT FOR SAME POWER AVAILABLE
LEADING
TYPICAL POWER FACTOR RANGE 200% 190% 180% 170% 160% 150% 140% 130% 120% 110% 100%
1
FULL RANGE OF LOAD POWER FACTOR (KVAR)
POOR POWER FACTOR RANGE
1.0
0.9
0.8
0.7
0.6
0.5
POWER FACTOR
Figure 15-30. Improving power factor reduces the electric bill when a power factor penalty is imposed and increases the system capacity.
276 ELECTRICAL PRINCIPLES AND PRACTICES
Smart Grid Technology Electrical usage increases each year due to new customers being added to the distribution system and because new electrical devices and equipment are continuously being developed and placed in use. Power usage has increased in homes that once used electricity primarily for lighting and a few appliances but now use electricity for lighting, climate control, entertainment, security, and communication as well. Schools and offices that once operated with only lighting and a few receptacle loads now include rooms full of electronic devices and automated building controls. Industries that once relied on manual labor are now nearly or completely automated by electrical and electronic equipment. The power distribution system was developed to deliver power primarily produced by generators powered by coal, natural gas, hydroelectric power, or nuclear power. This distribution system worked well because the generating capacity far exceeded the demand, allowing the system to easily handle peak demand and new customer needs. However, over the years, the demand has grown much faster than the production capability, and the system has aged and is in need of upgrading.
electrical distribution system. Electrical demand is generally low in the early morning and increases as industrial equipment, lights, computers, air condition‑ ers, and other loads are turned ON. Electrical demand normally peaks in early afternoon. See Figure 15-32. To improve the delivery of electricity, the electrical distribution system must be improved. A smart grid is a power delivery system that uses the latest technol‑ ogy to deliver clean, efficient, reliable, and safe power from the utility to its customers. In a smart grid, the latest technology is used to modernize substations, switches, protection devices, wires, transformers, ca‑ pacitor banks, and multiple power-production devices including generators, wind turbines, and solar panels. A smart grid is capable of the following: • two-way communication and efficient transmission between devices from production to end use • automatically redirecting system power as needed, reducing peak demand (load shedding) while still delivering the required power automatically by con‑ trolling when certain high power consuming devices are used • constantly monitoring the system for usage and problems • automatically correcting system problems
Tech Fact In 2007, the Energy Independence and Security Act was passed. Title XIII of the act gave the Department of Energy (DOE) funding and support in its role in leading and coordinating national electrical grid modernization efforts.
Today, the power distribution system has reached or is close to its maximum capacity in many areas and, in general, has not been updated with new technol‑ ogy that can improve system reliability, efficiency, and safety. In addition, computers and motor drives produce harmonics and other problems for the power distribution system. Because of this, the power distri‑ bution system, from power production to end use, is being reviewed for ways to improve system efficiency, capacity, and power quality, and changes are being implemented in some areas. See Figure 15-31. Most electrical distribution systems can operate satisfactorily when supply exceeds demand. However, electrical utilities experience problems when electri‑ cal usage exceeds production capacity. Electrical demand is based on the average load placed on an
Fluke Corporation
Power loggers monitor power demand and are therefore used to conduct electrical system energy studies and verify the benefits of efficiency improvements.
Chapter 15 — Transformers and Smart Grid Technology 277
Traditional Power Transmission and Distribution System
STEP-UP TRANSFORMER 12,470 V TO 245,000 V HEAVY INDUSTRY
POWER GENERATING PLANT
PRIMARY TRANSMISSION LINES 4160 V TO 34,500 V POWER PLANT TRANSMISSION LINES
TRANSMISSION STATION
DISTRIBUTION LINES 480 V TO 4160 V
DISTRIBUTION LINES 480 V TO 4160 V
FINAL STEP-DOWN TRANSFORMER 120/240 V
DISTRIBUTION SUBSTATION
FINAL STEP-DOWN TRANSFORMER 480 V
COMMERCIAL
FINAL STEP-DOWN TRANSFORMER 120/240 V
INDUSTRIAL
POWER AND DISTRIBUTION INFORMATION FLOW IN ONLY ONE DIRECTION FROM POWER SOURCE TO CUSTOMERS
RESIDENTIAL
Figure 15-31. In a traditional power transmission and distribution system, power and distribution information flow in only one direction, from the power source to the customer.
Electrical Demand ELECTRICAL DISTRIBUTION SYSTEM MUST BE SIZED TO MEET HIGHEST DEMAND
ENERGY kWh
12:00 1 am
2
3
4
5
6
7
8
9
10
11 NOON 1 TIME
2
3
4
5
6
7
8
9
10
11 12:00 am
Figure 15-32. Electrical demand is the amount of electrical power consumed and normally peaks in early afternoon.
278 ELECTRICAL PRINCIPLES AND PRACTICES
Smart Appliance Technology Load shedding can only take place with loads that are designed to be remotely controlled. Manufacturers are developing smart appliances and devices that can be remotely controlled by the owner through a smart phone or computer and/or by a utility. For example, refrigera‑ tors are available that can track food items and their expiration dates when each food item is scanned using a smart phone as it is placed in the refrigerator. Likewise, smart washers, dryers, ovens, and other appliances allow remote control by owners and utilities. Applying smart appliance technology allows loads to be automatically shed during high demand times and turned ON during low demand times. See Figure 15-34.
By allowing each device in the system to commu‑ nicate with each other and the central control site, the power produced can be directed, redirected, improved, and controlled between the production stations and customers for maximum efficiency. Smart grid technol‑ ogy is being implemented to allow greater use of clean, reliable, electrical power. See Figure 15-33.
Tech Fact An industrial company that has a power factor of 75% requires the utility to size their distribution system 25% larger than if the power factor were 100%.
Smart Grid Power Transmission and Distribution System STEP-UP TRANSFORMER 12,470 V TO 245,000 V HEAVY INDUSTRY
POWER GENERATING PLANT
POWER PLANT TRANSMISSION LINES
PRIMARY TRANSMISSION LINES 4160 V TO 34,500 V TRANSMISSION STATION
DISTRIBUTION LINES 480 V TO 4160 V
DISTRIBUTION LINES 480 V TO 4160 V
FINAL STEP-DOWN TRANSFORMER 120/240 V
DISTRIBUTION SUBSTATION
FINAL STEP-DOWN TRANSFORMER 480 V
COMMERCIAL
INDUSTRIAL
PHOTOVOLTAIC SYSTEM
FINAL STEP-DOWN TRANSFORMER 120/240 V
RESIDENTIAL
WIND TURBINE
POWER AND DISTRIBUTION INFORMATION FLOWS FROM POWER SOURCE TO CUSTOMER, CUSTOMER LOADS TO UTILITY POWER PLANTS, AND BETWEEN EACH LOAD IN SYSTEM
Figure 15-33. In a smart grid power transmission and distribution system, power and distribution information flow from power source to customer, customer loads to the utility power plants and control sites, and between each load in the system.
Chapter 15 — Transformers and Smart Grid Technology 279
Smart Appliance Technology
• INCLUDES CAMERA SO IT CAN BE SENT ANYWHERE IN HOUSE AND TRANSMIT PICTURE • AUTOMATICALLY CLEANS ROOMS • INCLUDES SELF ROOM MAPPING
• START/STOP • TIME REMAINING • ADD DETERGENT/ FABRIC SOFTENER • DISPLAY ANY PROBLEM • SET TEMPERATURE
SMART SMALL APPLIANCES (such as remote-controlled vacuum)
SMART WASHER AND DRYER
• FOOD ITEMS • LOCATION, EXPIRATION DATE • TEMPERATURE CONTROL
• START/STOP/SET TEMPERATURE • TIME SETTINGS • DISPLAY ANY PROBLEMS • SETS TYPE OF COOKING (GRILL, BAKE, ETC)
WIFI SMART OVEN
SMART REFRIGERATOR SMART METER
SMART PHONE/ TABLET PC
TO SMART GRID UTILITY CONTROL OF APPLIANCE TO REDUCE POWER DURING PEAK TIMES AND REDUCE UTILITY BILL
CUSTOMER SERVICE CENTER
Figure 15-34. Smart washers, dryers, ovens, and other appliances allow for remote control by owners and utilities.
Portable Generators Portable generators are used to supply electrical power in emergencies, on construction sites, for recreation, and as a backup for utility power. A properly sized portable genera‑ tor should deliver enough power (in watts) at the correct voltage (12 VDC, 120 VAC, 120/240 VAC) to operate all loads connected to the generator. An undersized generator cannot operate the loads as required, which can damage both the loads and generator. Generators are rated by their maximum power output, surge power output, and voltage outputs. For example, a
portable generator may be rated for 8500 W (8.5 kW) maxi‑ mum power output and 11,750 W (11.75 kW) surge power output at 120 VAC. The surge power output rating is used to select a generator that has enough power to handle loads that include motors with higher starting power than run‑ ning power. For example, a 1 HP air compressor requires approximately 1500 W when running and approximately 5500 W when starting. In general, it is best to allow at least 25% additional available generator output power than the expected power draw of the loads connected to the genera‑ tor. See Figure 15-35.
280 ELECTRICAL PRINCIPLES AND PRACTICES
Average Wattage Requirement Guide Electrical Load Air compressor (1 HP)
Running Wattage
Starting Wattage
3000
11,000
AM/FM clock radio
10
0
Battery charger (15 A, no boost)
375
375
Battery charger (60 A, no boost)
1500
1500
25
0
Clothes dryer (electric)
3600
9000
Clothes dryer (gas)
1800
4500
Coffee maker
1300
0
Desktop computer with 18″ LCD monitor
300
0
Cell phone battery charger
Dishwasher (hot dry)
1200
3000
Electric welder (200 A)
9000
9000
Fax machine
150
0
Garage door opener (¹⁄₂ HP)
550
1375
Grinder (4¹⁄₂″)
750
950
Grinder (9″)
2300
3000
Hand drill (¹⁄₂″)
600
800
Hand jigsaw
650
850
High-pressure washer (1 HP)
1200
3600
Humidifier (13 gal.)
175
0
Laser printer
400
0
Microwave (625 W)
625
0
Reciprocating saw (7″ blade)
1150
1600
Sander (¹⁄₂ sandpaper sheet size)
450
650
Security system
500
0
Table saw (10″)
1800
4500
Washing machine
950
2400
Water well pump (¹⁄₄ HP)
575
1440
portable lights and fans are connected to it. Loads such as refrigerators and sump pumps are powered by unplugging them from receptacles and plugging them into extension cords connected to the portable generator. Back-up generators are generators that are placed in a fixed location and connected to the power distribution system through a manual or automatic transfer switch. When utility power is out, the back-up generator provides power without the need to unplug devices from receptacles and plug them into the generator. A transfer switch detects when utility power has been removed, disconnects the utility distribution system from the loads, and connects the generator to the loads. Transfer switches and generator control circuits can be manually operated, or they can be totally automatic, starting the gen‑ erator and automatically controlling the power as needed. See Figure 15-36.
Automatic Transfer Switch Connections TO UTILITY FEED
TO BACK-UP GENERATOR ESSENTIAL LOAD PANEL
NON-ESSENTIAL LOAD PANEL
Figure 15-35. Portable generators must be sized in relation to the operating power and surge power requirements of the loads connected to the generator.
The expected amount of power required by a generator depends on the number of loads to be powered and the type of loads. Electrical load power requirements can be determined by listing each load and checking the load nameplate or manual to determine the amount of power they use. Back-up generators normally supply power only to the loads that must have power during a power outage.
Automatic Utility to Generator Switching Portable generators are generators that are moved between locations and used to power loads when utility power is out. Portable generators normally do not have loads connected to them until they are placed in service. For example, a portable generator used in a residential location may be turned ON when the utility power is OFF and loads such as
TO BACK-UP GENERATOR
TO UTILITY FEED
LOAD AUTOMATIC TRANSFER SWITCH
Figure 15-36. Transfer switches and generator control circuits can be manually operated, or they can be totally automatic, starting the generator and automatically controlling the power as needed.
Chapter 15 — Transformers and Smart Grid Technology 281
Chapter 15 Review and Resources
Review 1. What does the basic law of magnetism state? 2. Explain how to increase the strength of the magnetic field around a conductor. 3. Define solenoid. 4. What is mutual inductance? 5. Describe the operation of a transformer. 6. Differentiate between a step-up and a step-down transformer. 7. Explain how to calculate the efficiency of a transformer. 8. Differentiate between hysteresis loss and eddy-current loss. 9. List the eight basic types of transformers. 10. What does the power rating of a transformer indicate? 11. Identify and define the four methods used to dissipate heat in a transformer. 12. Explain how to calculate kVA capacity of a 1φ transformer when voltage and current are known. 13. What is the amount of current flow of a transformer dependent on? 14. What is temperature rise in a transformer? 15. When the maximum ambient temperature exceeds 10°C above the average temperature, how much is a transformer derated? 16. Differentiate between overhead and lateral service. 17. Differentiate between a wye and a delta configuration. 18. What are the three main sections of a substation?
282 ELECTRICAL PRINCIPLES AND PRACTICES