Academy Scientific Issue 1.1

Page 27

Abstracts

OW A GLIMPSE OF WHAT PROJECTS CH STUDENTS ARE COMPLETING AT BCA

Benzoin’s anti-aging properties: A new frontier for skin care Benzoin, first synthesized in 1832 by Justus von Liebig and Friedrich Woehler, is an organic compound. Benzoin is synthesized from benzaldehyde, which is the primary component of bitter almond oil. Bitter almond oil has been claimed mostly by folklore to have beneficial effects on the skin such as anti-itching, anti-inflammatory, antioxidant, and antiseptic. Bitter almond oil has even been claimed to prevent evil spirits. However, the ability of Benzoin to have anti-aging properties on the skin has not been scientifically proven. Certain enzymes, in particular, the matrix metalloproteinase (MMP) family are involved in the breakdown of the extracellular matrix (ECM), which gives skin tissue its firmness and elasticity. MMP-9 was specifically chosen in this experiment because it is mostly responsible for the degradation of skin’s elasticity and firmness. When the activity of MMP-9 is inhibited, the skin can maintain a healthier, youthful structure. It was hypothesized that if the concentration of Benzoin was introduced and increased in the skin cells human keratinocytes (HaCaT cells) and dermal fibroblasts, the levels of MMP-9 in these cells would decrease in a dose-dependent manner. A spectrophotometer was used to assay the levels of MMP-9 in the cells. Statistically significant assay results showed that the amount of MMP-9 in the cells decreased as the concentration of Benzoin increased (p<0.05). Viability results show that concentrations less than .01 μL Benzoin were nontoxic, with the aforementioned concentration being toxic to 40.5% of the cells. These results clearly state that Benzoin possesses the ability to decrease the levels of MMP-9 in HaCaTs and dermal fibroblasts. In the future, Benzoin, synthesized from benzaldehyde, deserves further recognition for its anti-aging effects on the skin as a result of its ability to downregulate MMP-9 in human keratinocytes.

Author: Elizabeth Dente AMST 2012

In addition to research, Elizabeth is also a violinist. She performs with her school orchestra and a string quartet that she formed with her friends. She is a youth leader in her church youth group and is currently planning a trip for the youth at her church to go to World Youth Day in Madrid, Spain. Her greatest passion being medicine, she hopes to work hard and someday become a doctor.

Gene Silencing of DARPP-32 in the Dopamine Pathway using Nanorod-mediated RNAi Nicotine addiction is a global health issue and is one of the leading preventable causes of death around the world. This experiment uses a newly discovered method of gold nanorod-mediated delivery of RNAi against the DARPP-32 gene. DARPP-32 regulates the dopaminergic signaling pathway in the brain, which is activated during addiction. Suppression of this gene was shown to lead to significant behavioral inhibition of the addiction process. Gold nanorods were electrostatically bound with RNAi, and these complexes were delivered into dopaminergic neuronal cells. The embryonal carcinoma cell line, P19, was differentiated into neuronal cells using retinoic acid. Dark field microscopy and gel electrophoresis were used to evidence the improved uptake of the nanorod/RNAi complexes in the cells, as compared to free RNAi. An immunofluorescence assay was used to show the direct impact of silencing the DARPP-32 gene on the dopamine pathway by using specific antibodies to fluorescently label the protein DARPP-32. Neuronal cells with inhibited levels of DARPP-32 can be exposed to the dopamine stimulator nicotine and have a reduced response, indicating the potential application of gold nanorod/ RNAi complexes to addiction therapy. These complexes appear to be an effective method of facilitating the delivery of RNAi to specific, targeted cellular sites.

Author: Michelle Rudshteyn AMST 2012 Besides research, Michelle enjoys swimming and ballroom dancing. She likes to read and write, and dreams of writing a bestselling novel. Her perfect day would involve reading a good book at the beach, discovering a new, life-saving medicine, and winning a Nobel Prize in Medicine.

ACADEMY SCIENTIFIC VOL 1.1 | 27


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.