On some cryptic sponges associated with Lessonia trabeculata holdfasts in the South-eastern Pacific

Page 1

Marine Biology Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/smar20

On some cryptic sponges associated with Lessonia trabeculata holdfasts in the South-eastern Pacific

Christian Polo, Bernabé Moreno, Yessenia Arroyo & Báslavi Cóndor-Luján

To cite this article: Christian Polo, Bernabé Moreno, Yessenia Arroyo & Báslavi Cóndor-Luján (2022): On some cryptic sponges associated with Lessonia trabeculata holdfasts in the Southeastern Pacific, Marine Biology Research, DOI: 10.1080/17451000.2022.2123521

To link to this article: https://doi.org/10.1080/17451000.2022.2123521

View supplementary material

Published online: 13 Oct 2022.

Submit your article to this journal

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=smar20

Onsomecrypticspongesassociatedwith Lessoniatrabeculata holdfastsinthe South-easternPacific ChristianPolo a,BernabéMoreno a,b,YesseniaArroyo a andBáslaviCóndor-Luján a aCarreradeBiologíaMarina,FacultaddeCienciasVeterinariasyBiológicas,UniversidadCientíficadelSur,Lima,Perú; bMarineEcology Department,InstituteofOceanology,PolishAcademyofSciences,Sopot,Poland

ABSTRACT

ThewarmtemperateSouth-eastPacificcoasthostsextensivekelpforeststhatprovide protectedhabitatstobenthicorganismssuchassponges.Tosoundlyunderstandthe interactionsbetweenkelpsandsponges,apriortaxonomicidentificationoftheassociated speciesisnecessary.Thisstudyaimedtoreportcrypticspongesfoundassociatedwiththe innerwallsoftheholdfastofthekelp Lessoniatrabeculata,opportunisticallycollectedinthe upwellingareaofSanJuandeMarcona(15°S,Peru).Threespongeswereidentified includingoneCalcarea, Clathrinaantofagastensis,andtwoDemospongiae, Johannesia reticulosa and Haliclona (Halichoclona) paracas.Noneofthemwaspreviouslyknownto occurassociatedwithkelps.These findingshighlighttheimportanceofexploringtheselessstudied(biogenic)substratestouncoverhiddenmarinebiodiversityandtheneedfor observationalorexperimentalstudiesaddressingtheinteractionsdevelopedbetweenkelps andtheirepiphytozoans.

Introduction

Kelpforestsconstituteoneofthemostconspicuous coastalmarineecosystemsthatdeveloponcoldwatershallowrockybottoms(Stenecketal. 2002).As autotrophs,theyareamongstthemostprolific primaryproducersglobally,formingbluecarbonhabitatsduetotheircapacityofcapturing(throughphotosynthesis)andstoringcarbonbyaccumulating biomassorgeneratingburialratesinsediments(Pessarrodonaetal. 2018),andultimatelyserveasa sourceforoutwellingprocesses(i.e.organicmatter exporttosurroundingareas,expandingprimaryproduction,seeSantosetal. 2021).Asecosystemengineers,theyprovidesuitablemicro-habitatsforthe colonizationofepifauna;inaddition,theyprovide abundantfoodsourceforprimaryconsumerssuchas herbivorous fishesandinvertebrates,thusincreasing secondaryproductivity(Smaleetal. 2013;Shelamoff etal. 2020).Moreover,theholdfastsofsomekelp speciesarecharacterizedbytheirlargesize,complexityandrobustness,providinganintricatesubstrate fordiverseorganismstothrive,includingsessile filter feederssuchassponges(phylumPorifera;Bell& Barnes 2000;Abdullah&Fredriksen 2004).

Kelpholdfastsappeartobeappropriateforsponge larvalsettlementandearlydevelopment,asthey

©2022InformaUKLimited,tradingasTaylor&FrancisGroup

ARTICLEHISTORY

Received11May2022

Accepted6September2022

KEYWORDS

provideasubstratecharacterizedbylowlightintensityandlowsedimentationrates(Bell&Barnes 2000; Cárdenasetal. 2012, 2015).However,fromallthe reportedtaxaassociatedwith,andfoundwithinthe kelpholdfasts,Poriferaisunderrepresentedand poorlyidenti fied(Fernándezetal. 1999;González etal. 2002;Włodarska-Kowalczuketal. 2009).To helpreducethisknowledgegap,thisstudyaimsto reportthespongesopportunisticallyfoundinthe innerwallsoftheholdfastof Lessoniatrabeculata Villouta&Santelices, 1986,oneofmostcommercially exploitedkelpspeciesfromtheHumboldtCurrent LargeMarineEcosystem.

Materialsandmethods Sampling

Spongesampleswereobtainedfromapreviousstudy focusedontheassessmentofcarbonassimilationby kelps,conductedinSanJuandeMarcona,Ica,Peru, inMay2019(seeAller-Rojasetal. 2020). During that fieldwork,atotalof42kelpswerecollectedin threesitesbutattentiontothespongesassociated withtheholdfastswastakenonlyat ‘Playa Hermosa’ (15°21′ 10.80′′ S,75°10′ 4.80′′ W),at11m depth.Fromthethreekelpssampledin ‘Playa

REPORT
Clathrina;Epiphytozoans; Haliclona; Johannesia;Peru; Porifera
CONTACT BáslaviCóndor-Luján bcondor@cientifica.edu.pe AntiguaPanamericanaSurKm.19,VillaElSalvador,Lima,Peru Supplementaldataforthisarticlecanbeaccessedonlineat https://doi.org/10.1080/17451000.2022.2123521 MARINEBIOLOGYRESEARCH https://doi.org/10.1080/17451000.2022.2123521 Published online 13 Oct 2022

Hermosa’,spongeswereobservedinallofthem,but onlyonekelp(holdfast)wasproperlycollectedand fixedforspongetaxonomystudies.

Kelpsporophyteswereidentified insitu following thedescriptionsofVillouta&Santelices(1986)and Arakakietal.(2018).Thepresenceofanirregular holdfastandslightly flattenedstipesinthespecimens,togetherwiththesubtidaldistribution matched Lessoniatrabeculata.Kelpsweredetached fromthesubstrateeithermanuallyorusinga modifiedaxe ‘barreta’ (fordetailsseeAller-Rojas etal. 2020;Morenoetal. 2021).Onceatthe surface,spongeswerecarefullyremovedfromthe innerwallsoftheholdfast, fixed,andpreservedin 96%ethanol.

Toregisterthe invivo characteristicsofthe sponges,underwaterphotographsweretakenwith acompactunderwatercamerarigconsistingofa GoProHERO6Blackeditionactioncamerawitha +15MacroMateminimacrolensandtwoSOLA 2000videolights.

Spongespeciesidentification

Externalmorphology(i.e.sizeandcolour,textureand consistency,sizeanddistributionofoscula)and internalanatomy(i.e.aquiferoussystemandskeleton organization)weredescribedfollowingBoury-Esnault &Rützler(1997)andKlautau&Valentine(2003).To characterizetheskeleton,sectionandspiculeslides werepreparedfollowingstandardproceduresfor Demospongiae(Rützler 1978;MothesdeMoraes 1985)andCalcarea(Klautau&Valentine 2003). Lengthandwidthofeachspiculecategory weremeasured,considering n =30spicules(when possible),fromwhichminimum,maximum,mean andstandarddeviationvalueswerecalculated,and presentedasfollows:min–mean±SD–max.Detailed observationsweremadeusingastereomicroscope CarlZeissStemiDV4andmicroscopeNikon Eclipsee100.Photographsofthepreservedspecimensandmicroscopeslidesweretakenwitha NikonCoolPixP310cameracoupledtotheoptic equipment.Speciesidentificationsfollowed SystemaPorifera (Hooper&vanSoest 2002)aswell asspecializedliterature(Gerasimovaetal. 2008; Azevedoetal. 2009, 2015;Bispoetal. 2022) andthemostrecentacceptedsystematic indices(Klautauetal. 2013;Morrow&Cárdenas 2015).Specimensweredepositedinthe ScientificCollectionofUniversidadCientíficadelSur (UCSUR).

Results

Taxonomy

ClassCalcarea Bowerbank,1862

SubclassCalcinea Bidder,1898

OrderClathrinida Hartman,1958

FamilyClathrinidae Minchin,1900

Genus Clathrina Gray,1867

Clathrina Gray,1867:(513).

Typespecies: Clathrinaclathrus (Schmidt,1864):(24).

Clathrinaantofagastensis Azevedo,Hajdu,Willenz& Klautau, 2009

(Figures1Aand 2, TableI)

Clathrinaantofagastensis:Azevedoetal. 2009:4, figure2;Azevedoetal. 2015:796, figure4.

Materialexamined

UCSUR07-000062,07–000083and07–000084(ethanol); PlayaHermosa,SanJuandeMarcona,Ica,Peru,15° 21′ 10.80′′ S,75°10′ 4.80′′ W,11mdepth,17May2019,collectorB.Moreno.

Description

Whiteinlifeandbeigeinethanol(Figures1Aand 2A). Finelyencrustingtoslightlymassivesponge.Smooth surface.Softandfragileconsistency.Thelargestspecimen(07-000083)measures12.0×4.0×1.5mm. Cormusformedbyirregularandmostlylooselyanastomosedtubeswithwater-collectingtubes(Figures1A and 2A).Asconoidaquiferoussystem.

Skeleton

Withoutanyspecialorganizationandexclusivelycomposedoftriactines(Figures2B–C).

Spicules

TriactinesI.Regular(equiangularandequiradiate). Actinesareslightlyconicaltoconical,slightlyundulated atthedistalpart,andwithsharporblunttips,50

82.3± 9.5–102.5×6.3–8±0.9–10µm(Figure2D, TableI).

TriactinesII.Regular(equiangularandequiradiate). Actinesareconical,straight,andwithsharptips,27.5–42.3±5.4–52.5×5–5.3±0.4–6.3µm(Figure2E, TableI).

Ecology

Clathrinaantofagastensis waspreviouslycollectedin intertidalandsubtidalrockysubstrates,inhabiting

2 C.POLOETAL.

areasprotectedfromsunlight(underneathboulders) andwithmoderatetohighconcentrationof sediments.Ithasbeenfoundattachedtoredmacroalgae(Rhodymenia sp.)andgastropodshellsandcloseto ascidians,brachiopods,bryozoans,hydroids,polychaetesandothersponges,downto24mdepth

(Azevedoetal. 2009, 2015).Itis firstlyreportedinhabitingtheinnerwallsofakelpholdfast(L. trabeculata), at11mdepth.Withintheholdfast,thedistance amongtheindividualsvariedfrom5–188mm(rough estimationobtainedfromtheunderwaterimages, Figure1).

Figure1. Spongesassociatedwith Lessoniatrabeculata holdfast.(A) Clathrinaantofagastensis (water-collectingtubeindicatedby circle);(B) Johannesiareticulosa;(C) Haliclona (Halichoclona) paracas
MARINEBIOLOGYRESEARCH 3
Figure2. Clathrinaantofagastensis Azevedoetal.(2009)(UCSUR07-000062):(A)specimenafter fixation;(B)cormusanastomosis; (C)skeleton(tangentialsection);(D)triactineI;(E)triactineII.

TableI. Spicule(triactines)measurementsof Clathrinaantofagastensis.Min,minimum;Max,maximum;SD,standarddeviation;N, numberofspiculesmeasured;H,holotype.

1Azevedoetal.(2009); 2Azevedoetal.(2015):specimensMNRJ11282,MNRJ13125andMNRJ13148.

Remarks

Theanalysedspecimensresemble C.antofagastensis in bothexternalmorphologyandskeletoncomposition butpresentsubtledifferences.Intheoriginaldescription,basedontheexaminationoftwospecimens fromChile,Azevedoetal.(2009)describedthis speciesasalightbeigespongeformedbytightlyanastomosedtubeswithnowater-collectingtubes.Later, consideringtheanalysisof10specimensfromPeru, Azevedoetal.(2015)specifiedthatthecolourinlife of C.antofagastensis couldalsobewhiteandthat water-collectingtubeswereobserved.Differentfrom theholotypeandthespecimensofAzevedoetal. (2015),theanastomoseofthecormusofourspecimensismostlyloose(asifthetubeswereexpanding onanewsubstrate),butinsomeotherregions,it canalsobecometight.Thiscormusvariationhas beenpreviouslyreportedinotherclathrinas(e.g. Klautauetal. 2020),anditmaycorrespondtothe species’ morphologicalvariability.Therefore,weidentifyourspecimensas C. antofagastensis.Thisspeciesis distributedfromthenorthcoastofChile(23°S,Antofagasta)tothenorthofthePeruviancoastline(5°S,Piura; Azevedoetal. 2009, 2015).Herein,weaddanew localityrecord:PlayaHermosa(15°S,Marcona). MEOWecoregion:CentralPeruandHumboldtian (Spaldingetal. 2007).

ClassDemospongiae Sollas,1885

SubclassHeteroscleromorpha Cárdenas,Pérez& Boury-Esnault,2012

OrderSuberitida Chombard&Boury-Esnault,1999

FamilyHalichondriidae Gray,1867

Genus Johannesia Gerasimova,Erpenbeck&Plotkin, 2008

Johannesia Gerasimova,Erpenbeck&Plotkin, 2008: (19).

Typespecies: Johannesiareticulosa (Thiele, 1905):(423).

Johannesiareticulosa (Thiele, 1905)

(Figures1Band 3, TableII)

Vosmaeriareticulosa Thiele, 1905;423, figures45a–c; Erpenbeck&VanSoest,2002;815.

Johannesiareticulosa Gerasimovaetal. 2008;19; figures10–12.

Materialexamined

UCSUR07–000061(ethanol);PlayaHermosa,SanJuan deMarcona,Ica,Peru,15°21′ 10.80′′ S,75°10′ 4.80′′ W, 11mdepth,17May2019,collectorB.Moreno.

Description

Orangeinlifeandbeigeinethanol(Figures1Band 3A). Massivesponge(fragment:31×25×70mm, Figure3A). Surfaceslightlyroughandridged.Compressibleconsistency.Osculaarecircular(1.2mm,diameter)andrandomly disposedonthesurface.Leuconoidaquiferoussystem.

Skeleton

Specializedanddetachableectosome.Ectosomalskeleton reticulated,withmeshescomposedoftylostylesandoxeas (Figure3B).Choanosomalskeleton,composedofmultispicularascendingtractsoftylostyles.Someoxeaslocated obliquelyalongthetractswerealsoobserved.Oxeasand fewtylostylesarescatteredbetweenthetracts,arranged perpendicularly,interconnectingtheascendingtracts (Figure3C)orliningthesubectosomalcavities.

Spicules

Oxeas.Straightandslightlycurved,330–508.9±70.5–670×5–12.3±2.8–17.5µm(Figure3D, TableII).

Tylostyles.Mostlyslightlycurvedbutalso straight,withsharptips,160–290.3±54.4–400×

Specimens LocalitySpicules Length(µm) Width(µm) MinMeanSDMaxMinMeanSDMaxN UCSUR07–000062 Marcona,PeruTriactinesI7083.47.71006.38.211030 TriactinesII4045.93.852.555.30.66.319 UCSUR07–000083 Marcona,PeruTriactinesI5080.610.9102.56.38.11.21030 TriactinesII27.544.26.952.555.60.66.320 UCSUR07–000084 Marcona,PeruTriactinesI65839.81006.37.80.68.830 TriactinesII32.536.95.54555054 IZUA-POR-0114=MNRJ9289(H)1 Antofagasta,ChileTriactinesI69.3104.113.3125.4 – 10.51.7 – 60 TriactinesII23.139.611.159.4 – 5.01.4 – 30 Several2 Peru TriactinesI6077.58.7100 – 8.00.2 – 90 TriactinesII32.540.31.950 – 5.50.4 – 90
4 C.POLOETAL.

5–7.9±1.3–10.3µm(Figures3E–G, TableII).Somesubtylostyleswerealsofound(Figure3H).

Ecology

Johannesiareticulosa waspreviouslyfoundassociated withthesponge Plicatellopsisexpansa at30mdepthin Chile(Thiele 1905).Nomoredetailsregardingthetype ofsubstratewereprovided.Herein,wefounditcovering theholdfastof Lessoniatrabeculata,at11mdepth.

Remarks

Themorphologicalcharactersobservedintheanalysed specimenmatchtheoriginaldescriptionof J.reticulosa aswellasitsre-description(Thiele 1905;Gerasimova etal. 2008).Onlyaslightdifferencewasnoticed;incontrasttoGerasimovaetal.(2008),someoxeasalsocomposedthemaintractsofthechoanosomalskeletonof thespecimenfromSanJuandeMarcona.Thisspecies isknownfromnorthernChile(20°S,Iquique)to southernPeru(14°S,Paracas,Thiele, 1905;Gerasimova etal. 2008),andnow,weincludeanintermediate locality(15°S,SanJuandeMarcona).MEOWecoregion: Humboldtian(Spaldingetal. 2007).

OrderHaplosclerida Topsent,1928

FamilyChalinidae Gray,1867

Genus Haliclona Grant,1841

Subgenus(Halichoclona) deLaubenfels,1932

Haliclona (Halichoclona)deLaubenfels,1932(113).

Typespecies: Haliclona (Halichoclona) gellindra (de Laubenfels,1932)(114).

Haliclona (Halichoclona) paracas Bispo,Willenz& Hajdu, 2022 (Figures1Cand 4, TableIII)

Materialexamined

UCSUR07–000063(ethanol);PlayaHermosa,SanJuan deMarcona,Ica(15°21′ 10.80′′ S,75°10′ 4.80′′ W),11m depth,17May2019,collectorB.Moreno.

Description

Beigeinlifeandslightlytransparentinethanol(Figures 1Cand 4A).Encrustingtomassivesponge(18×13× 3mm).Surfacesmoothandporous.Compressible andsoftconsistency.Osculaaresmallcircles(1

2mm,diameter)randomlydisposedonthesurface (Figure4A).Leuconoidaquiferoussystem.

Skeleton

Ectosomalskeleton,atangentiallayerwithunispicular isotropicreticulation(Figure4B).Choanosomalskeleton dense,forminganisotropicnetworkmostlyunispicular, occasionallywith2–3oxeasbyside(Figure4C).

MARINEBIOLOGYRESEARCH 5
Figure3. Johannesiareticulosa (Thiele 1905)(UCSUR07-000061):(A)specimenafter fixation;(B)ectosomalskeleton(tangential section);(C)choanosomalskeleton(crosssection);(D)oxeas;(E–G)tylostyles;(H)subtylostyle.

TableII.

Spiculemeasurementsof Johannesiareticulosa.Min,minimum;Max,maximum;SD,standarddeviation;N,numberof spiculesmeasured;H,holotype.

Spicules

Oxeas.Slightlycurved,small,acerate,125–143.8±9.2–155×6.3–7.9±0.9–10µm(Figure4D, TableIII).Verythin oxeaswerealsoobservedintheectosome(Figure4D’).

Ecology

Haliclona (Halichoclona) paracas waspreviouslyfound growingonrockysubstrate,attachedtoothersponges andseaanemones,at8mdepth(Bispoetal. 2022). Herein,we firstlyreportitassociatedwiththeholdfast of Lessoniatrabeculata,at11mdepth.

Remarks

Amongthe10 Haliclona speciesreportedfromPeru (deVoogdetal. 2022),ourspecimenissimilarto

both Haliclona (Halichoclona) pellucida and Haliclona (Halichoclona) paracas inexternalmorphologyand skeletonarrangement.However,differentfrom Haliclona (Halichoclona) pellucida whichiswhitewhen alivewithtranslucentsurfaceandbearshastate oxeas(Bispoetal. 2022),ourspecimenisbeigewith non-translucentsmoothsurface(see Figure1C),and itsoxeasareacerate.Comparedwith Haliclona (Halichoclona) paracas,onlyaslightdifferenceinspicule sizewasobserved.Oxeasareshorter(125–155×6.3–10µm, TableIII)whencomparedwiththespeciesholotype(157–211×5.1–12.8µm).Thisdifferencecanbe attributabletothespeciesvariationinresponseto thedifferentenvironmentalconditions(Stone, 1970; Subagioetal. 2017),thusweidentifythisspecimen as Haliclona (Halichoclona) paracas.Thisspecieswas knownonlyfromitstypelocalityinSantaRosaIsland Specimens LocalitySpicule Length(µm)Width(µm) MinMeanSDMaxMinMeanSDMaxN UCSUR07–000061Marcona,PeruTylostyles160290.354.440057.91.310.330 Oxeas330508.970.5670512.32.817.530 ZMBpor3279(H)1 Iquique,ChileTylostyles – 350 8 Oxeas – 525 15 ZMBpor3279(H)2 Iquique,ChileTylostyles104255 – 3694.27.3 – 11.760 Oxeas292447 – 5504.210.8 – 13.360 Several3 Paracas,PeruTylostyles158276 – 4003.56.5 – 1560 Oxeas215503 – 710511.8 – 2060
1Thiele(1905), 2Gerasimovaetal.(2008), 3Gerasimovaetal.(2008):specimensHL2352,HL2354andHL2425. 6 C.POLOETAL.
Figure4. Haliclona (Halichoclona) paracas Bispoetal.(2022)(UCSUR07-000063):(A)specimenafter fixation;(B)ectosomal skeleton;(C)choanosomalskeleton(crosssection);(D)oxeas;(D’)thinoxeas(blackarrows).

TableIII.

(14°S,Paracas,Bispoetal. 2022)andnow,weextendits distributiontoPlayaHermosa(15°S,Marcona).MEOW ecoregion:Humboldtian(Spaldingetal. 2007).

Discussion

Severalspeciesofspongeshavebeenreportedasepiphytozoans(sensu Taylor&Wilson, 2002)onholdfast kelpsdistributedworldwide.Acompilationofthese speciesisshowninTableSI,includinglocalitiesin theNorthAtlantic(Christieetal. 2003;Blight&Thompson 2008;Wallsetal. 2016;Teagleetal. 2018),Western Pacific(Flukes,Johnson&Wright 2014;Cárdenasetal. 2015)andEasternPacific(Ávilaetal. 2010;Cárdenas etal. 2016;Vega 2017;Carbajaletal. 2022).Regarding theSouth-easternPacific,intheMagellanStrait, Amphimedon cf. maresi, Clathrina sp.and Haliclona cf. porcelana werefoundassociatedwiththegiantkelp Macrocystispyrifera,whereas H. cf. porcelana, Halisarca sp.and Scopalina sp.havebeenreportedinassociation with Lessonia spp.,including L.vadosa and L. flavicans (Vasquez&Santelices 1984;Cárdenasetal. 2016;Vega, 2017;Newcombe&Cárdenas 2011;seeTableSI,for moredetails).InPeru,spongesassociatedwiththe holdfastof L.trabeculata and M.pyrifera havebeen recentlyreported,howevertheiridentificationhas remainedasundetermined(Carbajaletal. 2022).

Toourknowledge,thisstudyrepresentsthe first descriptionofthespongespeciesoccupyingtheholdfastinnerwallsofthesubtidalkelp L.trabeculata inthe South-easternPacific. Thesespongescorrespondedto threepreviouslyreportedspecies,whichwerefound attachedtorockysubstrates(Azevedoetal. 2009, 2015; Bispoetal. 2022)ortoothersponges(Thiele 1905),indicatingthattheyarenotexclusivelyassociatedwithholdfastkelps.

Lessoniatrabeculata isthesecondmostcommerciallyexploitedkelpspeciesintheSEPacific,andis byfarthemostabundantoftheseinthesublittoral fringeenvironment(Vásquez 2016).InPeru,kelp researchhasbeenfocusedonkelppopulationstructureanddynamics(Zavalaetal. 2015;Tejadaetal. 2019)astheyproviderelevantinformationtohelp regulatetheextractionofthisbioresource.However, studiesonthemacrofaunaassociatedwithkelpsas

.Min,minimum;Max,maximum;SD,standard

wellastheinteractionsamongthemhavereceived limitedattention(butseeRomeroetal. 1988;Carbajal etal. 2022).Assessingthoseinteractionswouldhelpin understandingtheinfluenceofotherorganisms(such assponges)onkelpforestfunctioning,andwould eventuallyprovidenewinsightsforthemanagement ofkelpresources.

Theopportunisticsamplingdescribedinthisstudy yieldednewunderstandingonthespongesaskey usersofthekelpinnerwalls,highlightingthe urgencyofspecialistsforcompletingthetotal specieslistatthelowestpossibletaxonomiclevel. Thethreespongesidentifiedhereindonotreflect thespongerichnessassociatedwiththeholdfastof L.trabeculata.Itispossiblethatifalargernumberof holdfastsofthisspeciesareanalysed,moresponge specieswouldbefoundasthissubstratefacilitates larvalsettlementandjuvenilegrowth(Bell&Barnes 2000;Cárdenasetal. 2012, 2015).

Our findingshighlighttheimportanceofexploring theseless-studied(biogenic)substrates(kelps)to uncoverthecrypticmarinebiodiversity,andthe needforobservationalorexperimentalstudiesaddressingkelp–spongeinteractions.

Acknowledgements

WearethankfultoEdgarLopezandFernandoCaldasfor aidinginthelaboratoryprocedures.Thanksaredueto D.K.A.BarnesandR.Downeyfortheircommentsonthe firstdraftofthemanuscript,aswellastothetwoanonymous refereesforprovidingtheirvaluablefeedback.

Disclosurestatement

Nopotentialconflictofinterestwasreportedbythe author(s).

Funding

ThisworkwassupportedbyUniversidadCientíficadeSur underGrant ‘EvaluacióndeladiversidaddeDemospongiae (PhylumPorifera)delascostascentralysurdelPerú (FondoSemilla2019,N°015-2019-PRO99)’ and ‘Inmovilizacióndecarbonoazulporbosquesdemacroalgasenel litoralcentro-surdelPerú(FondoSemilla2018)’

Length(µm) Width(µm) Specimen LocalityMinMean±SDMaxMinMeanSDMaxN UCSUR07–000063Marcona125143.89.21556.37.90.91030 MNRJ12841(H)1 Paracas157187 – 2115.110.2 – 12.830
MARINEBIOLOGYRESEARCH 7
Spicule(oxeas)measurementsof Haliclona (Halichoclona) paracas
deviation;N,numberofspiculesmeasured;H,holotype.
1Bispoetal.(2022).

ORCID

ChristianPolo http://orcid.org/0000-0001-6775-8156

BernabéMoreno http://orcid.org/0000-0002-9751-6307

YesseniaArroyo http://orcid.org/0000-0003-2477-7079

BáslaviCóndor-Luján http://orcid.org/0000-0001-78327319

References

AbdullahMI,FredriksenS. 2004.Production,respirationand exudationofdissolvedorganicmatterbythekelp Laminariatrabeculata alongthewestcoastofNorway. JournaloftheMarineBiologicalAssociationoftheUnited Kingdom.84:887–894.doi: 10.1017/S002531540401015Xh

Aller-RojasO,MorenoB,AponteH,ZavalaJ. 2020.Carbon storageestimationof Lessoniatrabeculata kelpbedsin SouthernPeru:ananalysisfromtheSanJuande Marconaregion.CarbonManagement.11:525–532.doi: 10.1080/17583004.2020.1808765

ArakakiN,Gil-KodakaP,CarbajalP,GamarraA,RamírezME. 2018.I-Rhodophyta.EnMacroalgasdelaCostaCentral delPerú(126p).Lima,Perú:UNALM.

ÁvilaE,Blancas-GallangosNI,Riosmena-RodríguezR,PaulChávezL. 2010.Spongesassociatedwith Sargassum spp. (Phaeophyceae:Fucales)fromthesouth-westernGulfof California.JournaloftheMarineBiologicalAssociationof theUnitedKingdom.90:193–202.doi: 10.1017/ S0025315409990580

AzevedoF,HajduE,WillenzP,KlautauM. 2009.Newrecordsof Calcareoussponges(Porifera,Calcarea)fromtheChilean coast.Zootaxa.2072:1–30.doi: 10.5281/zenodo.187091.

Cárdenas C,DavyS,BellJ. 2012.Correlationsbetweenalgal abundance,environmentalvariablesandspongedistributionpatternsonsouthernhemispheretemperate rockyreefs.AquaticBiology.16:229

239.doi:10.3354/ ab00449

CárdenasCA,DavySK,BellJJ. 2015.Influenceofcanopyformingalgaeontemperatespongeassemblages. JournaloftheMarineBiologicalAssociationofthe UnitedKingdom.96:351–362.doi:10.1017/ S0025315414002057

CárdenasCA,NewcombeEM,HajduE,Gonzalez-AravenaM, GeangeSW,BellJJ. 2016.Spongerichnessonalgae-dominatedrockyreefsinthewesternantarcticpeninsulaand themagellanstrait.PolarResearch.35:1–6.doi:10.3402/ polar.v35.30532.

ChristieH,JørgensenNM,NorderhaugKM,Waage-NielsenE. 2003.Speciesdistributionandhabitatexploitationof faunaassociatedwithkelp(LaminariaHyperborea)along theNorwegianCoast.JournaloftheMarineBiological AssociationoftheUnitedKingdom.83:687–699.doi: 10. 1017/S0025315403007653h.

deVoogdNJ,AlvarezB,Boury-EsnaultN,CarballoJL, CárdenasP,DíazM-C,DohrmannM,DowneyR,HajduE, HooperJNA,KellyM,KlautauM,ManconiR,MorrowCC, PiseraAB,RíosP,RützlerK,SchönbergC,VaceletJ,van SoestRWM. 2022.WorldPoriferaDatabase. https://www. marinespecies.org/porifera on2022-07-28.doi:10.14284/ 359.

FernándezE,CórdovaC,TarazonaJ. 1999.Condicionesdela praderasubmarealde Lessoniatrabeculata enlaisla Independenciadurante “ElNiño1997–98”.Revista PeruanadeBiología.6:47

59.doi: 10.15381/rpb.v6i3.8430

FlukesEB,JohnsonCR,WrightJT. 2014.Thinningofkelp canopymodifiesunderstoryassemblages:theimportance ofcanopydensity.MarineEcologyProgressSeries. 514:57–70.doi: 10.3354/meps10964.

817.doi:10.1111/zoj.12213.

AzevedoF,Cóndor-LujánB,WillenzP,HajduE,HookerY, KlautauM. 2015.Integrativetaxonomyofcalcareous sponges(subclasscalcinea)fromthePeruviancoast:morphology,molecules,andbiogeography.ZoologicalJournal oftheLinneanSociety.173:787

BellJJ,BarnesDKA. 2000.Thedistributionandprevalenceof spongesinrelationtoenvironmentalgradientswithina temperatesealough:inclinedcliff surfaces.Diversityand Distributions.6:305–323.doi:10.1046/J.1472-4642.2000. 00092.X

BispoA,WillenzP,HajduE. 2022.Divingintotheunknown: fourteennewspeciesofhaploscleridsponges (Demospongiae:Haplosclerida)revealedalongthe Peruviancoast(SoutheasternPacific).Zootaxa. 5087:201–252.doi: 10.11646/zootaxa.5087.2.1

BlightAJ,ThompsonRC. 2008.Epibiontspeciesrichness variesbetweenholdfastsofanorthernandasoutherlydistributedkelpspecies.JournaloftheMarineBiological AssociationoftheUnitedKingdom.88:469–475.doi:10. 1017/S0025315408000994.

Boury-EsnaultN,RutzlerK. 1997.Washington,DC: SmithsonianInstitutionPress. CarbajalP,GamarraA,MoorePJ,Pérez-MatusA. 2022

Differentkelpspeciessupportuniquemacroinvertebrate assemblages,suggestingthepotentialcommunity-wide impactsofkelpharvestingalongtheHumboldtcurrent system.AquaticConservation:MarineandFreshwater Ecosystems.32(1):14–27.doi:10.1002/aqc.3745.

GerasimovaE,ErpenbeckD,PlotkinA. 2008 Vosmaeria Fristedt,1885(Porifera,Demospongiae,Halichondriidae): revisionofspecies,phylogeneticreconstructionandevidenceforsplit.Zootaxa.1694:1

37.doi:10.11646/ zootaxa.1694.1.1

GonzálezJ,TapiaC,WilsonA,GarridoJ,ÁvilaM. 2002. Estrategiadeexplotaciónsustentabledealgaspardasen lazonanortedeChile.InformeFinalProyectoFondode InvestigaciónPesqueraN°2000-19.IFOP,232pp.

HooperJNA,VanSoestRWM. 2002.Systemaporifera.Aguide totheclassificationofsponges.In:J.N.A.Hooper,R.W.M. Van Soest,P.Willenz,editor.Systemaporifera.Boston,MA: SpringerUS;p.1–7.

KlautauM,ValentineC. 2003.Revisionofthegenus Clathrina (Porifera,Calcarea).ZoologicalJournalofthe LinneanSociety.139:1–62.doi: 10.1046/j.0024-4082.2003. 00063.x

KlautauM,AzevedoF,Condor-LujanB,RappHT,CollinsA,de MoraesCA. 2013.AmolecularphylogenyfortheorderclathrinidarekindlesandrefinesHaeckel’staxonomicproposalforcalcareoussponges.IntegrativeandComparative Biology.53:447–461.doi:10.1093/icb/ict039

KlautauM,LopesMV,GuarabyraB,FolcherE,EkinsM, DebitusC. 2020.CalcareousspongesfromtheFrench Polynesia(Porifera:Calcarea).Zootaxa.4748(2):261

295. doi: 10.11646/zootaxa.4748.2.3.

8 C.POLOETAL.

MorenoB,CevallosB,GómezSánchezR,Torrejón-ZegarraR, Aller-RojasO. 2021.Adetailedunderwaterandon-board workflowformarineecologicalresearch,usingasubtidal kelpforeststudy.SouthSustainability.2(2):1–7.doi:10. 21142/SS-0202-2021-m001

MorrowC,CárdenasP. 2015.ProposalforarevisedclassificationoftheDemospongiae(Porifera).Frontiersin Zoology.12(7):1–27.doi: 10.1186/s12983-015-0099-8.

MothesdeMoraesB. 1985.EsponjasMarinhas.Manualde TécnicasparaPreparaçãodeColeçõesZoológicas.São Paulo(SP):SociedadeBrasileiradeZoologia;p.2.0-2.3.

NewcombeEM,CárdenasC. 2011.RockyreefbenthicassemblagesintheMagellanStraitandtheSouthShetland Islands(Antarctica).RevistadeBiologíaMarinay Oceanografía.46(2):177–188.doi:10.4067/S071819572011000200007

PessarrodonaA,MoorePJ,SayerMDJ,SmaleDA. 2018 Carbonassimilationandtransferthroughkelpforestsin theNEAtlanticisdiminishedunderawarmerocean climate.GlobalChangeBiology.24:4386–4398.doi: 10. 1111/gcb.14303.

RomeroL,ParedesC,ChavezR. 1988.EstructuradelamacrofaunaasociadaalosrizoidesdeLessoniasp.(Laminariales, Phaeophyta).In:SalzwedelH,LandaA,editors. COLACMAR1987.Memoriasdel2doCongreso LatinoamericanosobreCienciasdelMar(COLACMAR); Aug17–21;Lima,Perú.p.133–139.

RützlerK. 1978.Spongesincoralreefs.In:StoddartDR, JohannesRE,editors.Coralreefs:researchmethods. Norwich:UNESCO;p.299–313.

SantosIR,BurdigeDJ,JennerjahnTC,BouillonS,CabralA, SerranoO,WernbergT,Filbee-DexterK,GuimondJA, TamborskiJJ. 2021.TherenaissanceofOdum’soutwelling hypothesisin ‘Bluecarbon’ science.Estuarine,Coastaland ShelfScience.255:1–11.doi:10.1016/j.ecss.2021.107361.

Shelamoff V,LaytonC,TatsumiM,CameronMJ,EdgarGJ, WrightJT,JohnsonCR. 2020.Kelppatchsizeanddensity influencesecondaryproductivityanddiversityofepifauna.Oikos.129(3):331–345.doi:10.1111/oik.06585

SmaleDA,BurrowsMT,MooreP,O’ConnorN,HawkinsSJ. 2013 Threatsandknowledgegapsforecosystemservicesprovidedbykelpforests:anortheastAtlanticperspective. EcologyandEvolution.3:4016–4038.doi:10.1002/ece3.774.

SpaldingMD,FoxHE,AllenGR,DavidsonN,FerdañaZA, FinlaysonM,HalpernBS,JorgeMA,LombanaA,Lourie SA,etal. 2007.Marineecoregionsoftheworld:abioregionalization ofcoastalandshelfareas.BioScience.57:573–583.doi:10.1641/B570707.

SteneckRS,GrahamMH,BourqueBJ,CorbettD,Erlandson JM,EstesJA,TegnerMJ. 2002.Kelpforestecosystems:biodiversity,stability,resilienceandfuture.Environmental Conservation.29:436–459.doi:10.1017/

S0376892902000322

StoneAR. 1970.Seasonalvariationsofspiculesizein Hymeniacidonperleve. JournaloftheMarineBiological

AssociationoftheUnitedKingdom.50:343–348.doi: 10. 1017/S0025315400004562

SubagioIB,SetiawanE,HariyantoS,IrawanB. 2017.Spicule sizevariationin Xestospongiatestudinaria Lamarck,1815 atProbolinggo-Situbondocoastal.AIPConference Proceedings.1854:020034.doi:10.1063/1.4985425

TaylorPD,WilsonMA. 2002.Anewterminologyformarine organismsinhabitinghardsubstrates.PALAIOS.17:522–525.doi:10.1669/0883-1351(2002)017<0522:ANTFMO>2. 0.CO;2

TeagleH,MoorePJ,JenkinsH,SmaleDA. 2018.Spatialvariabilityinthediversityandstructureoffaunalassemblages associatedwithkelpholdfasts(Laminariahyperborea)in thenortheastAtlantic.PLoSOne.13:e0200411.doi:10. 1371/journal.pone.0200411

TejadaA,BaldarragoD,VillanuevaJ,GamarraA. 2019 Assessmentof Lessoniatrabeculata Villouta&Santelices, 1986intheIloProvince,MoqueguaRegion,October 2015.InformeInstitutodelMardelPeru.46(1):52

59.

ThieleJ. 1905.DieKiesel-undHornschwämmeder SammlungPlate.ZoologischeJahrbücherSupplement.6 (FaunaChiliensisIII):407–496.

VásquezJA. 2016.TheBrownSeaweedsFisheryinChile.In: H.Mikkola,editor.FisheriesandAquacultureinthe ModernWorld.London:IntechOpen;123–141.doi:10. 5772/62876

VásquezJA,SantelicesB. 1984.Comunidadesdemacroinvertebradosendiscosadhesivosde Lessonianigrescens Bory (Phaeophyta)enChilecentral.RevistaChilenade HistoriaNatural.57:131–154.

VegaJMA. 2016.Faunaasociadaadiscosdeadhesióndel complejo Lessonianigrescens.¿Esunindicadordeintegridadecológicaenpraderasexplotadasdehuironegro,en elnortedeChile?LatinAmericanJournalofAquatic Research.44:623–637.doi:10.3856/vol44-issue3-fulltext21

VilloutaE,SantelicesB. 1986 Lessonia trabeculata sp.nov (Laminariales,Phaeophyta),anewkelpfromChile. Phycologia.25:81–86.doi: 10.2216/i0031-8884-25-1-81.1

WallsA,KennedyR,FitzgeraldR,BlightA,JohnsonM, EdwardsM. 2016.Potentialnovelhabitatcreatedbyholdfastsfromcultivated Laminariadigitata:assessingthe macroinvertebrateassemblages.Aquaculture EnvironmentInteractions.8:157–169.doi: 10.3354/ aei00170

Włodarska-KowalczukM,KuklińskiP,RonowiczM, LegeżyńskaJ,GromiszS. 2009.Assessingspeciesrichness ofmacrofaunaassociatedwithmacroalgaeinArctickelp forests(Hornsund,Svalbard).PolarBiology.32(6):897–905.doi: 10.1007/s00300-009-0590-9.

ZavalaJ,FloresD,DonayreS,ZevallosJ,HuamaniS. 2015 Populationassessmentof Lessoniatrabeculata VilloutaandSantelices,1986inSanJuandeMarcona, March2010.InformeInstitutodelMardelPerú.42 (4):510–515.

MARINEBIOLOGYRESEARCH 9

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.