8 minute read

Elizabeth Weiser Caswell Diabetes Institute

Advancing Excellence in Research and Clinical Care

Martin Myers, MD, PhD, Marilyn H. Vincent Professor of Diabetes Research and Professor, Molecular & Integrative Physiology

According to the latest research, “more than 100,000 Americans died from diabetes in 2021, marking the second consecutive year for that grim milestone.” In fact, recent reports have indicated that more than 10 percent or greater than 34 million, people in the United States have diabetes and 88 million adults have prediabetes. The increasing prevalence of diabetes, obesity and associated metabolic conditions in the United States raises concerns over the serious complications that can result such as heart disease, vision loss, and kidney disease.

A long-time leader in research and innovation, the talent, collaboration, and generous resources available at the University of Michigan has enabled substantial contributions to the field of diabetes, leading in the field for decades. To help continue to expand and coordinate these efforts, the Caswell Diabetes Institute was established in 2021.

With the incredibly generous $30 million gift from Ron Weiser and his wife, Eileen, in honor of his daughter, Elizabeth Weiser Caswell, the Caswell Diabetes Institute (CDI) will harness the strengths of Michigan Medicine and the University of Michigan, by accelerating dynamic research, robust training programs, and advancing excellence in clinical care to patients with diabetes, obesity, and other metabolic disease conditions.

Michigan Medicine has been recognized as a top ten hospital for Diabetes and Endocrinology care, and the University of Michigan campus is home to more than 250 world-renowned researchers in diabetes, diabetic complications, obesity, and metabolic disorders. The creation of the CDI allows us to truly support the scholarship and mentoring necessary to build the talent and pipeline of experts.

Additionally, the CDI provides the infrastructure to stimulate progress in research and clinical care as we collectively seek better treatments, and ultimately cure and prevent diabetes, obesity and other metabolic conditions. The CDI can support established scholarship, research and services, while also providing the mechanism for innovation through pilot programs and patient and family-centered quality improvement initiatives.

The CDI is led by Martin Myers, MD, PhD, Marilyn H. Vincent Professor of Diabetes Research, whose research focuses on the process that enables the body to respond normally to insulin and “glycemic control centers” and the actions of the key metabolic hormone, leptin. Dr. Myers also serves as Director of the Michigan Diabetes Research Center – and his inclusive approach to leadership has brought forth the expertise of a dynamic team of researchers and clinicians that are dedicated to ensuring that the CDI is supporting and advancing the most important diabetes related research that not only break important new ground, but also can lead to advancements in clinical care and beyond. This includes ensuring integration and coordination among the affiliated diabetes centers.

The CDI coordinates and offers comprehensive support and guidance, integrating mentoring and fellowship in addition to an array of core services and resources. For example, the CDI leads the competitive Clinical-Translational Research Scholars Program (CTRSP), led by Dr. Rodica Pop-Busui, to support early-stage clinical faculty, and funds protected time from clinical care duties to help establish robust research programs. Thus far, the CDI has supported 4 CTRSP scholars, including Lindsay Ellsworth, MD, Yu Kuei Lin, MD, Brian Schmidt, DPM, and Kara Mizokami-Stout, MD.

Serving as the umbrella organization, the CDI works with the P30 Centers to lead and coordinate enrichment programs across the campus. This effort is led by Dr. Brigid Gregg, Assistant Professor of Pediatrics, Medical School, and Assistant Professor of Nutritional Sciences, School of Public Health, and helps ensure broad engagement and collaboration across schools and departments.

Other big initiatives in this first year have included the advancement of the integration of clinical research technology through an Electronic Health Record (EHR) Program. Led by Dr. Joyce Lee, this program works with Precision Health to improve access to a repository of longitudinal EHR data for patients with diabetes, obesity, and metabolic disorders – including treatments, outcomes, and personal device data. This program also offers a robust consultative service, leveraging IT tools to support integration of research into the “real world” healthcare delivery setting.

Because the care of current patients and families remains paramount to the goals of the CDI, efforts are in place to move toward the integration of clinical research and care through the support and development of innovative hybrid clinical research programs. Highlights include the Genetics of Diabetes and Obesity Program, run by Dr. Elif Oral that seeks to provide molecular diagnosis and appropriate care for those with genetic causes of metabolic disease, as well as the Weight Navigation Program, led by Drs. Kraftson and Griauzde, which offers personalized, effective obesity treatment in primary care settings through the integration of physicians certified in obesity medicine into primary care teams, to ultimately help individuals find a path toward effective, personalized weight control, leveraging evidence-based science. The goal of these programs is to provide new research-focused resources that will lead to new discoveries, while simultaneously improving the care of those with diabetes, obesity and related conditions.

By serving as a central hub for diabetes care and research and supporting rigorous science and its integration with patient-centered clinical care, the CDI plans to lead the way in preventing, treating, and ultimately curing diabetes, its complications, and other related metabolic diseases…not just here in Michigan, but for the world.

Rachel Reinert, MD, PhD: One key aspect of the CDI is the commitment to increase the number of investigators performing cutting-edge research through both recruitment and retention of faculty. An enormous achievement in this effort includes the addition of Rachel Reinert, MD, PhD, who became tenure-track Assistant Professor at Internal Medicine, University of Michigan Medical School this past year. Dr. Reinert’s interest in medicine originated in childhood summers spent with her grandmother, whose diabetes was one of the defining struggles of her life. While working as a laboratory technician in college, she became fascinated with research exploring dietary and pharmacologic mechanisms that regulate amino acid metabolism. As a first-generation college graduate, she found guidance through a trusted mentor and entered a combined medical and research training, where her passion for science met her aim to contribute to significant clinical impacts. In 2014, she joined the Physician Scientist Training Program at U-M to pursue clinical and research training in endocrinology. Here, she became fascinated with the concept of protein misfolding as a primary contributor to diverse endocrinologic diseases, including diabetes and obesity. She joined the laboratory of Dr. Ling Qi and was introduced to endoplasmic reticulum (ER)-associated degradation (ERAD) as a critical machinery that protects against endocrine cell dysfunction. In 2021, she received an NIDDK K08 Career Development Award to further her work on protein quality control in glucagon-producing pancreatic islet alpha cells, aiming to better understand their contribution to glucose homeostasis. Her overarching goal is to unravel the mechanisms underlying intracellular and intercellular communication within pancreatic islets to identify novel targets for diabetes therapeutics. As a member of CDI, Dr. Reinert hopes to not only continue her own pursuit of research discovery in practice, but aims to inspire others to do so – serving as Medical School faculty in addition to her roles as a physician in the Metabolism, Endocrinology & Diabetes (MEND) Clinic, as well as an independent research scientist.

Dr. Alison Affinati, MD, PhD: Dr. Affinati is an internal medicine provider with medical specialization in endocrinology, diabetes & metabolism. She is currently a post-doctoral fellow in the laboratory of Dr. Martin Myers, which focuses on the biology of leptin, a hormone that regulates physiological processes relevant to diabetes and the metabolic syndrome. Circulating leptin enters the central nervous system to inform the brain about nutritional and metabolic status by activating the leptin receptor (LRb) on specific neurons. These neurons regulate metabolism (including glycemic control) and endocrine function. Dr. Affinati’s work focuses on ventromedial hypothalamic nucleus (VMH) controls with diverse behaviors and physiologic functions, as well as the involvement of the brain in the regulation of both immediate fuel availability (for example, circulating glucose) and long-term energy stores. In addition to her research in the laboratory, Dr. Affinati is a member of the Physician Scientist Training Program, where she balances the time between her patients, where she can provide focused, personalized care, to time in the lab, where she can continue to pursue discoveries that will have real world application. Growing up, she always knew that she wanted to be a physician – and seeing her uncle manage type 1 diabetes left an early impression about the unfairness of a diagnosis that often has a childhood onset, that requires such significant lifestyle challenges, with long term implications. Now, as a physician at the Metabolism, Endocrinology & Diabetes (MEND) Clinic, Dr. Affinati can continue to learn from her patients, as managing care can change with age and variable environmental factors – and is glad to stay connected to the impact that this disease has on people’s lives. One recent highlight includes Dr. Affinati and colleagues work to explore the connection between severe hyperglycemia and insulin resistance in patients with SARS-CoV-2 infection, which may represent unique clinical features to further explore.

*For more information on diabetes visit https://www.cdc. gov/diabetes/basics/diabetes.html *For more information on the CDI, visit https://medicine. umich.edu/dept/diabetes-institute

This article is from: