
2 minute read
IV. REFERENCES
IV. REFERENCES
Agrawal, Y., Ravi Shanker, R. G. and Alluri, V. (2021) ‘Transformer-based Approach Towards Music
Advertisement
Emotion Recognition from Lyrics’. Bello, J. P. et al. (2005) ‘A tutorial on onset detection in music signals’, 13(5), pp. 1035–1047. doi: 10.1109/TSA.2005.851998. Böck, S., Krebs, F. and Schedl, M. (2012) ‘Evaluating the Online Capabilities of Onset Detection
Methods’. ISMIR. doi: 10.5281/zenodo.1416035. Böck, S. and Widmer, G. (2013) ‘Maximum Filter Vibrato Suppression for Onset Detection’ . Dixon, S. (2006a) ‘Onset Detection Revisited’. Dixon, S. (2006b) ‘Simple Spectrum-Based Onset Detection’. Eck, D. and Lacoste, A. (2007) ‘A Supervised Classification Algorithm for Note Onset Detection’. Eck, D. and Schmidhuber, J. (2002) ‘Finding temporal structure in music: blues improvisation with LSTM recurrent networks’, in. IEEE (Proceedings of the 12th IEEE Workshop on Neural Networks for
Signal Processing), pp. 747–756. doi: 10.1109/NNSP.2002.1030094. Eyben, F. et al. (2010) ‘Universal Onset Detection with Bidirectional Long-Short Term Memory Neural
Networks’. (11th International Society for Music Information Retrieval Conference). Available at: https://explore.openaire.eu/search/publication?articleId=od_______518::efb4c46cd113df0d8d82e393 eed27bd4. Gao, R. . and Yan, R. (2006) ‘Non-stationary signal processing for bearing health monitoring’, 1(1). doi: 10.1504/IJMR.2006.010701. Gong, R. and Serra, X. (2018) ‘Towards an efficient deep learning model for musical onset detection’.
Available at: https://arxiv.org/abs/1806.06773. Lindqvist, B. (2019) Reproducing the State of the Art in Onset Detection Using Neural Networks. KTH,
Skolan för elektroteknik och datavetenskap (EECS). Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255267. Marolt, M. and Kavčič, A. (2003) ‘Neural Networks for Note Onset Detection in Piano Music ’. Mottaghi, A. et al. (2017) ‘OBTAIN: Real-Time Beat Tracking in Audio Signals’, 5(4). doi: 10.18178/ijsps.5.4.123-129. Müller, M. (2016) Fundamentals of Music Processing : Audio, Analysis, Algorithms, Applications.
Springer International Publishing, pp. 303–310. Available at: https://library.biblioboard.com/viewer/0f4841da-d67b-4a2a-822f-6fa532cef1b3. Park, Jonggwon et al. (2019) ‘A Bi-directional Transformer for Musical Chord Recognition’. Available at: https://arxiv.org/abs/1907.02698. Phi, M. (2018) Illustrated Guide to Recurrent Neural Networks. (Towards Data Science). Available at: https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9 (Accessed: 2021).
Reiss, J. D. and Zhou, R. (2007) ‘Music Onset Detection Combining Energy-Based and Pitch-Based
Approaches’. Reiss, J. D. and Zhou, R. (2010) Music Onset Detection. (Machine Audition: Principles, Algorithms and
Systems). Roebel, A. (2005) ‘Onset Detection in Polyphonic Signals by means of Transient Peak Classification’. Roebel, A. (2009) ‘Onset detection by means of transient peak classification in harmonic bands’, in, p. 1.
Available at: https://hal.archives-ouvertes.fr/hal-01161234. Rudolph, G. et al. (2016) Music Data Analysis. CRC Press (Chapman & Hall/CRC Computer Science &
Data Analysis), pp. 412–420. doi: 10.1201/9781315370996. Salamon, J. and Bello, J. P. (2017) ‘Deep Convolutional Neural Networks and Data Augmentation for
Environmental Sound Classification’, 24(3). doi: 10.1109/LSP.2017.2657381. Schedl, M., Gómez, E. and Urbano, J. (2014) Music Information Retrieval: Recent Developments and
Applications . Hanover, Massachusetts: now (Foundations and Trends® in Information Retrieval, 8), pp. 127–261. doi: 10.1561/1500000042. Schindler, A., Lidy, T. and Böck, S. (2020) ‘Deep Learning for MIR Tutorial’. Available at: https://arxiv.org/abs/2001.05266. Schlüter, J. and Böck, S. (2013) ‘Musical Onset Detection with Convolutional Neural Networks’.
Available at: http://84.89.139.82/system/files/publications/Schlueter_MML13.pdf. Schluter, J. and Bock, S. (2014) ‘Improved musical onset detection with Convolutional Neural Networks’, in. IEEE (2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)), pp. 6979–6983. doi: 10.1109/ICASSP.2014.6854953.