2 minute read

The Importance of Edge Clearance

Next Article
Wrap Up

Wrap Up

Edge clearance is an important aspect of design. It is the distance between two traces on a circuit board and helps to ensure that the signals are isolated from each other, avoiding interference and crosstalk. Proper edge clearance also prevents shorts from occurring due to accidental contact between two components. Without proper edge clearance, the circuit board may not function correctly, or at all

Edge clearance plays an especially important role in high-speed and high-frequency designs, as it ensures that the traces are far enough apart that they don’t interfere with each other’s signals. Edge clearance also affects the signal integrity and the overall performance of the PC Board. Poorly designed edge clearance can cause signal degradation, data loss, and even the destruction of components.

Advertisement

In general, PCB designers should aim to have at least 6 mils or 0.006 inches of clearance between traces to avoid any potential issues. However, depending on the complexity of the design and the components, this value can be higher. It is also important to remember that edge clearance varies depending on the size of the trace, voltage levels, and other factors. Designers need to consider all of these factors when designing their PCBs to ensure that the edge clearance is adequate for the design.

Factors That Affect Edge Clearance

When it comes to designing a printed circuit board, different parameters can affect the edge clearance of the design. Some of the most important factors include:

1. PCB Size: Edge clearance is directly proportional to the size of the PCB; the larger the PCB, the more distance between components and the edge of the board will be required. This is why it is important to carefully consider the size of the PCB before beginning the design process.

2. Track Width: The width of any tracks on the PCB will also have an impact on the edge clearance. Tracks with larger widths will require more clearance space around them, so designers need to be mindful when choosing track widths in their designs.

3. Components: The size and shape of the components can also have an impact on edge clearance. Larger components require more space around them, as well as additional spacing for any pins or connections that may protrude from the component body.

4. Electrical Clearance: You must also consider the electrical clearance requirements. Adjacent components can affect the electrical signals, so designers must ensure that they maintain adequate spacing between components and the edge of the board.

Understanding and taking into account these factors is crucial when designing a PCB with proper edge clearance. By being aware of these considerations, engineers can make sure that their designs are safe and reliable, while also allowing them to extend past clearance if needed. Other than understanding the factors that affect edge clearance, there are several techniques and strategies that designers can use to increase their margins of safety. One such strategy is implementing guard rails along the edges of the PCB which prevent components from getting too close to the edges.

It’s also possible to use vias instead of traces when routing along the edges of the board since vias have greater electrical clearance than traces. Moreover, using smaller components and smaller track widths wherever possible can help free up some much-needed extra space along the edges.

Another way to increase the margins of safety is by making use of breakout boards whenever necessary. This will allow you to route complex circuits away from the main board, reducing clutter and giving you more room for edge clearance. With careful planning and attention to detail, you can easily extend the past edge clearance without

This article is from: