4 minute read

Un’intelligenza da comprendere

Next Article
IVERSITÀ

IVERSITÀ

ChatGPT tra bene ci e rischi potenziali, tra a dabilità e problemi irrisolti

“De nite i vostri termini o non riusciremo mai a capirci l’un l’altro”. Per Melanie Mitchell, informatica, questo ammonimento del losofo Voltaire è una s da per chiunque parli di intelligenza arti ciale, perché il suo concetto centrale, cioè l’intelligenza, resta de nito in modo vago. L’intelligenza arti ciale, scrive Mitchell nel suo libro “L’intelligenza arti ciale. Una guida per essere pensanti”, eredita il problema di termini come “intelligenza”, “pensiero”, “coscienza” e “emozione” tutti stipati in una valigia come un’accozzaglia di signi cati disparati in contesti di erenti.

Ha senso parlare di intelligenza riferita alle macchine?

Nel corso della storia dell’intelligenza artificiale paragonare queste due forme di “intelligenza” ci ha aiutato a comprendere il significato di intelligenza e le sue diverse accezioni in contesti diversi. Ad esempio, un tempo si diceva: “Se un computer potesse giocare a scacchi al livello di un grande maestro, ciò richiederebbe un’intelligenza generale umana“. Poi abbiamo realizzato che una macchina può sì giocare al livello di un grande maestro, e addirittura superare il maestro, non per questo però possiamo affermare che sia “intelligente” come noi. Dunque, fare un confronto tra macchine e uomo può essere utile per definire con precisione e comprendere l’intelligenza generale umana. Ma allo stesso tempo può essere rischioso perché applichiamo erroneamente alle macchine quegli stessi termini che usiamo quando ci riferiamo ai processi cognitivi umani. Quando diciamo che “questa macchina è un sistema di apprendimento automatico” intendiamo che la macchina sta imparando allo stesso modo degli esseri umani? No, perché la parola “apprendimento” riferita alle macchine ha un significato completamente diverso dall’apprendimento degli esseri umani. Ecco perché paragonare queste due forme di intelligenza è utile e altrettanto azzardato senza una giusta distinzione tra le abilità umane e quelle dell’intelligenza artificiale.

Quanto sono “intelligenti” i sistemi di intelligenza arti ciale generativa di ultima generazione? Come possiamo valutarlo?

Come non abbiamo una definizione comune di intelligenza, è difficile dire quanto siano intelligenti le macchine. Anche misurare l’intelligenza umana è complesso: i test del QI sono basati su una sola scala e tentano di stimare una sola dimensione dell’intelligenza umana. Non sappiamo nemmeno misurare l’intelligenza degli animali perché non sappiamo come pensano o, fino in fondo, cosa li spinge a fare una determinata

Intervista a

Melanie Mitchell Davis professor of Complexity Santa Fe institute, New Mexico

azione; pertanto l’applicazione di test incentrati sull’uomo sarebbe fuorviante. Se non sappiamo misurare in modo rigoroso l’intelligenza degli esseri viventi animali, perché dovremmo riuscire a farlo con le macchine?

Possiamo affermare “questa macchina sembra molto intelligente perché sa rispondere alle mie domande” ma non è una valutazione scientifica. L’intera comunità scientifica che si occupa di intelligenza artificiale sta cercando di capire come valutare l’intelligenza di queste macchine. Il test di Turing era nato proprio con il criterio di valutare se una macchina o un algoritmo fosse intelligente: se fosse in grado di parlarci e di farci credere che stiamo parlando con un essere umano, allora dovremmo considerarla una macchina pensante e quindi intelligente. Negli anni il test di Turing è stato riformulato in quanto impreciso, facendo però sorgere nuovi problemi relativi alla definizione di “macchina intelligente”. La questione è che siamo precipitosi e crediamo di parlare con qualcosa di simile a un essere umano, che può capirci e pensare come noi, anche quando è molto chiaro che non è così. Diamo troppo credito alle macchine con cui conversiamo assegnando a esse troppa “intelligenza” e intelligenza umana.

Eppure le coinvolgiamo per svolgere parte del nostro lavoro e per la produzione di articoli e notizie per esempio. Non sono a dabili quindi?

Al momento i sistemi di intelligenza artificiale generativa non sono completamente affidabili: possono produrre delle risposte false o fuorvianti. Se provate a chiedere a ChatGPT di scrivere la vostra biografia o quella di un vostro parente o conoscente, vedrete che spesso aggiungerà delle informazioni che non sono veritiere. Proprio recentemente è stato pubblicato un articolo sull’uso di questi sistemi di intelligenza artificiale generativa nei motori di ricerca, in cui si chiedeva da quale sito web il sistema avesse tratto un dato o un’informazione. Il risultato è stato che spesso citavano come fonte un sito web sbagliato. Un altro aspetto da non sottovalutare è la produzione di fake media: testi, immagini, video e suoni che mostrano con estremo realismo eventi che non sono accaduti. Questi sistemi possono essere usati per creare disinformazione. Se chiedete a ChatGPT di scrivere qualcosa di falso, ad esempio di spiegare se la Terra è piatta, otterrete un testo che può essere diffuso a supporto delle teorie dei terrapiattisti. Altrettanto potrebbe verificarsi su temi controversi e dibattuti. Sono dell’idea che questi sistemi stiano già creando disinformazione e che sarà molto difficile distinguere i testi fake generati da gtp da quelli scritti da esseri umani.

I modelli di intelligenza arti ciale generativa sono adatti a un settore così complesso come quello medico e sanitario?

Potenzialmente lo sono ma se affiancati dall’uomo. Se siete un medico e avete un paziente che presenta determinati sintomi, potreste chiedere a ChatGPT quali malattie potrebbero essere implicate in questo caso clinico. Il sistema produce una serie di ipotesi diagnostiche. Magari una delle risposte generate potrebbe suggerire qualcosa a cui non avevate pensato oppure potrebbe darvi qualche nuova idea. Serve però verificare che quanto generato dal sistema sia corretto perché non dobbiamo fidarci ciecamente. Quindi, questi sistemi potrebbero essere molto utili nella pratica clinica e nell’assistenza sanitaria come assistenti e non come sostituti della figura umana.

Per concludere, ci stiamo muovendo troppo velocemente nell’introduzione dei chatbot?

Penso di sì perché, ripeto, non sono sistemi ancora affidabili e potrebbero essere dannosi in diversi modi. La questione è che sono già di pubblico utilizzo e sempre più vengono utilizzati. Ora vengono usati sempre di più dalle aziende nello sviluppo di nuovi prodotti basati sull’intelligenza artificiale. Nei termini e condizioni di utilizzo OpenAI potrebbe avere allertato gli utenti dei limiti di questo strumento che autonomamente a volte si inventa di sana pianta delle false verità, ma la gente lo usa comunque. Questi sistemi dovrebbero essere regolamentati. Come abbiamo agenzie regolatorie per i dispositivi medici e per i farmaci, dovremmo avere un regolatorio anche per i sistemi di intelligenza artificiale che vigili sull’affidabilità e sicurezza, affinché i benefici siano maggiori dei rischi. Ad oggi manca un quadro normativo per regolamentare questi prodotti. Se ne sta discutendo ampiamente e si dovrebbe accelerare la regolamentazione prima che questi prodotti siano diffusi ovunque. È in questo senso che ci stiamo muovendo troppo velocemente. Come scrivo nel libro, siamo lontani da macchine super intelligenti coscienti. Ciò che dovrebbe spaventarci oggi sono i possibili usi pericolosi fraudolenti di questi sistemi. Mi rincuora però l’attenzione che questo sta ricevendo dentro e fuori la comunità dell’intelligenza artificiale. Ho l’impressione che fra ricercatori, nelle multinazionali e nell’ambiente politico stia prendendo piede l’idea della necessità di affrontare questi problemi e di risolverli. F

This article is from: